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On Completeness of Root Vectors of Fourth Order
Operator Pencil Corresponding to Eigenvalues of
Quarter Plane

S.S. Mirzoev

Abstract. In this paper, we find sufficient conditions for the existence and uniqueness
of a regularly holomorphic solution of boundary value problem for a class of fourth-
order operator differential equations. Moreover, for an operator pencil associated with
the boundary value problem under consideration, we prove the completeness of its root
vectors, corresponding to eigenvalues from the sector S̃π

4
=
{
λ : |arg λ− π| < π

4

}
. We

also establish the completeness of elementary regularly holomorphic solutions of the
considered operator differential equation.
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Let us consider a fourth order polynomial operator pencil

P (λ) = λ4E −A4 + λ3A1 + λ2A2 + λA3 (1)

in a separable Hilbert space H, where E is an identity operator, λ is a spectral
parameter, and the remaining coefficients satisfy the following conditions:

1. A is a positive definite self-adjoint operator with completely continuous
inverse A−1;

2. the operators Bj = AjA
−j , j = 1, 3, are bounded in H.
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Obviously, the domain of the operator Aγ (γ ≥ 0) is the Hilbert space Hγ

with respect to scalar product (x, y)γ = (Aγx, Aγy ) , x, y ∈ D (Aγ); for γ = 0
we assume that H0 = H.

In this paper, we find the conditions on the coefficients of the operator pencil
(1) that provide the completeness of its eigen- and adjoint vectors (root vectors)
corresponding to the eigenvalues from the sector

S̃π
4

=
{
λ : |arg λ− π| < π

4

}
.

Note that the completeness (multiple completeness) of eigenvectors and ad-
joint vectors corresponding to eigenvalues from the left half-plane was studied by
M.G. Gasymov [1, 2, 3], G.V. Radzievskii [4], A.A. Shkalikov [5], S.S. Mirzoev
[6, 7], A.R. Aliev and A.A. Gasymov [8], A.R. Aliev and A.S. Mohamed [9] (see
also the references therein).

The completeness of the eigenvectors and adjoined vectors with a defect,
corresponding to eigenvalues from some sector, was considered by M.G. Gasymov
[3], G.V. Radzievskii [4] and others.

Denote

Sπ
4

=
{
λ : |arg λ| < π

4

}
.

Definition 1. If the equation P (λn) x0,n,j = 0 has a non-trivial solution x0, n, j,
then λn is called an eigenvalue, and x0, n, j the corresponding eigenvector of the op-
erator pencil P (λ), corresponding to λn. If the vectors x0, n, j , x1, n, j , ..., xh, n, j , h =
0, mn, j , j = 1, qn, satisfy the equations

h∑
q=1

dqP (λ)

q!dλq
xh−q,n,j = 0,

then x0, n, j , x1, n, j , ..., xh, n, j are called eigen- and adjoint vectors of the pencil
P (λ), corresponding to the eigenvalue λn.

Let’s denote by L2 (R+; H) the Hilbert space of functions f(t) defined almost
everywhere on R+ = (0,+∞) , with values in H, for which

‖f‖L2(R+;H) =

(∫ +∞

0
‖f (t)‖2 dt

) 1
2

< +∞.

Further, following the monograph [10], we define the Hilbert space

W 4
2 (R+; H) =

{
u(t) : u(4) ∈ L2 (R+; H) , A4u ∈ L2 (R+; H)

}
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with the norm

‖u‖W 4
2 (R+;H) =

(∥∥A4u
∥∥2

L2(R+;H)
+
∥∥∥u(4)

∥∥∥
L2(R+;H)

) 1
2

.

Here the derivatives are understood in the sense of the theory of distributions
[10].

Following M.G. Gasymov [3], we denote by H4, π
4

a linear set of functions

f (z) with values in H, which are holomorphic in the sector Sπ
4
, satisfy f(teiα) ≡

fα (t) ∈ L2 (R+; H) for each α ∈
(
−π

4 ,
π
4

)
, and

sup
|α|<π

4

∫ +∞

0

∥∥f(teiα)
∥∥2
dt < +∞.

The functions f(z) ∈ H4, π
4

have boundary values (almost everywhere or in

L2 (R+; H)) f± (t) ∈ L2 (R+; H) on the rays Γ±π
4

=
{
λ = te±i

π
4 , t > 0

}
. H4, π

4

becomes a Hilbert space with the norm

‖f‖H4, π4

=
1√
2

(
‖f+(t)‖2L2(R+;H) + ‖f−(t)‖2L2(R+;H)

) 1
2
.

We introduce the Hilbert space

W 4
2, π

4
=
{
u(z) : u(4)(z) ∈ H4, π

4
, A4u(z) ∈ H4, π

4

}
with the norm

‖u‖W 4
2, π4

=

(∥∥∥u(4)(z)
∥∥∥2

H4, π4

+
∥∥A4u(z)

∥∥2

H4, π4

) 1
2

and the subspace
◦
W

4

2,π
4

of the space W 4
2,π

4
:

◦
W

4

2,π
4

=
{
u(z) : u(z) ∈W 4

2,π
4
, u(0) = 0

}
.

Note that the subspace
◦
W

4

2,π
4

is defined correctly, as there are analogues of theo-

rems on intermediate derivatives and traces for the functions u(z) ∈W 4
2,π

4
, i.e. if

u(z) ∈W 4
2,π

4
, then

A4−ju(j)(z) ∈ H4, π
4
, j = 0, 3, u(j) (0) ∈ H4−j− 1

2
, j = 0, 3,
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and ∥∥∥A4−ju(j)
∥∥∥
H4, π4

≤ const ‖u‖W 4
2, π4

, j = 0, 3,∥∥∥u(j) (0)
∥∥∥

4−j− 1
2

≤ const ‖u‖W 4
2, π4

, j = 0, 3.

If u(z) ∈ W 4
2,π

4
, then u±(t) ∈ W 4

2 (R+; H) . Further, we note that if e−tA is

a semigroup of bounded operators generated by the operator −A, then e−zAϕ
belongs to W 4

2,π
4

if and only if ϕ ∈ H7/2, moreover∥∥e−zAϕ∥∥
W 4

2, π4

≤ const ‖ϕ‖7/2 .

Now we associate the pencil (1) with the boundary value problem

P

(
d

dz

)
u(z) = 0, z ∈ Sπ

4
, (2)

u(0) = ϕ, ϕ ∈ H 7
2
. (3)

Here the derivatives are understood in the sense of complex analysis in H.

Definition 2. If for any ϕ ∈ H 7
2

there is a function u(z) ∈ W 4
2,π

4
that satisfies

the equation (2) identically in Sπ
4

, the boundary condition (3) in the sense of
convergence

lim
z → 0
|arg z| < π

4

‖u(z)− ϕ‖ 7
2

= 0

and the estimate
‖u‖W 4

2, π4

≤ const ‖ϕ‖ 7
2
,

then the problem (2), (3) is called regularly solvable, and u(z) is called a regular
holomorphic solution of this problem.

It is evident that if λn ∈ S̃π
4

and {xh, n,j} is the system of eigen- and adjoint
vectors of the pencil P (λ) corresponding to the eigenvalue λn, then

uh,n,j (z) = eλnz
(
zh

h!
x0,n,j +

zh−1

(h− 1)!
x1,n,j + ...+ xh,n,j

)
, h = 0, mn,j , j = 1, qn,

belong to the space W 4
2,π

4
, satisfy the equation (2), and are called elementary

holomorphic solutions of equation (2) in the sector Sπ
4
. Conversely, if all the

functions uh,n,j (z) belong to W 4
2,π

4
and satisfy equation (2), then the vectors
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x0, n, j , x1, n, j , ..., xh, n, j are eigen- and adjoint vectors of the pencil P (λ) , corre-
sponding to the eigenvalue λn ∈ S̃π

4
. Denote this system by K

(
π
4

)
.

The goal of this paper is to find conditions that provide the completeness
of the system K

(
π
4

)
in the space of traces of regular holomorphic solutions of

the equation (2), i.e. in H 7
2
, and the completeness of the system of holomor-

phic elementary solutions {uh,n,j(z)}∞n=1 , h = 0, mn,j , j = 1, qn, in the space of
holomorphic solutions of the boundary value problem (2), (3).

Note that the completeness of the system K
(
π
4

)
with a finite-dimensional

defect in H with Bj ∈ σ∞ , j = 1, 3, was proved in [3].

Now we prove some statements.

Let’s introduce the notations

P0u ≡ P0

(
d

dz

)
u (z) = u(4) (z)−A4(z), P1u =

3∑
j=1

A4−ju
(j)(z), u ∈

0

W 4
2, π

4
,

and

P0 (λ) = λ4E −A4, P1 (λ) =

3∑
j=1

λjA4−j .

First we investigate some analytical properties of the resolvent P−1 (λ) .

Lemma 1. Let the conditions 1), 2) and the inequality

3∑
j=1

d4,j ‖B4−j‖ < 1

hold, where

d4,j =

(
j

4

) j
4
(

4− j
4

) 4−j
4

, j = 1, 3. (4)

Then the estimates ∥∥λsA4−sP−1 (λ)
∥∥ ≤ const, s ∈ [0, 4],

hold on the rays γ± =
{
λ : λ = te±i

3π
4 , t ≥ 0

}
.

Proof. Let λ ∈ γ+, i.e. λ = tei
3π
4 . Then the operator pencil P0 (λ) =

λ4E −A4 = −t4E −A4 is invertible in H and, from the representation

P (λ) = P0 (λ) + P1 (λ) =
(
E + P1 (λ)P−1

0 (λ)
)
P0 (λ) , λ ∈ γ+,
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we see that if
∥∥P1 (λ)P−1

0 (λ)
∥∥ < θ < 1 for λ ∈ γ+, then the pencil P (λ) is also

invertible in H. As the inequality

∥∥P1 (λ)P−1
0 (λ)

∥∥ ≤ 3∑
j=1

‖B4−j‖
∥∥λjA4−jP−1

0 (λ)
∥∥

holds for λ ∈ γ+, it follows from the spectral decomposition of operator A that∥∥λsA4−sP−1
0 (λ)

∥∥ = sup
µ∈σ(A)

∣∣∣tsµ4−s (t4 + µ4
)−1
∣∣∣ ≤ sup

τ>0

∣∣∣τ s (τ4 + 1
)−1
∣∣∣ = d4,s,

where d4,s =
(
s
4

) s
4
(

4−s
4

) 4−s
4 , s = 1, 3, d4,s = 1, for s = 0 and s = 4.

Thus ∥∥P1 (λ)P−1
0 (λ)

∥∥ ≤ 3∑
j=1

d4,j ‖B4−j‖ < 1.

Then
P−1 (λ) = P−1

0 (λ)
(
E + P1 (λ)P−1

0 (λ)
)−1

and for s ∈ [0, 4] the inequality∥∥λsA4−sP−1 (λ)
∥∥ ≤ ∥∥λsA4−sP−1

0 (λ)
∥∥ · ∥∥E + P1 (λ)P−1

0 (λ)
∥∥ ≤ const.

holds. J

Theorem 1. Let the condition 1) be satisfied. Then the operator P0 = P0

(
d
dz

)
isomorphically maps the space

◦
W

4

2,π
4

onto the space H2, π
4

.

Proof. For x ∈ H 7
2

the function u0 (z) = e−zAx is a general solution of the

equation P0

(
d
dz

)
u(z) = 0 from the space W 4

2,π
4
. From the condition u(z) ∈

◦
W

4

2,π
4

it follows that e−zAx = 0, i.e., x = 0. Therefore, Ker P0 = {0}. On the other
hand, it is easy to see that the vector function

ω(z) =
1

2πi

2∑
k=1

∫
Γk

(−1)kP−1
0 (λ) f̂ (λ) dλ, Γ1 = γ+, Γ2 = γ−,

where f̂ (λ) is the Laplace transform of the function f(z) ∈ H2, π
4
, is a particular

solution of the equation P0

(
d
dz

)
u(z) = f(z). As f(z) ∈ H2, π

4
, f̂ (λ) is holomor-

phic in the sector C\S̃π
4
,
∥∥∥f̂ (λ)

∥∥∥→ 0, λ→∞ in this sector, and f̂ (λ) has bound-

ary values on γ+ and γ−. Lemma 1, in particular, implies that ω (z) ∈ W 4
2,π

4
.
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Then the general solution of the equation P0

(
d
dz

)
u(z) = f(z) from the space

W 4
2,π

4
has the form u(z) = ω(z)+e−zAx, x ∈ H 7

2
. From the condition u(0) = 0 it

follows that x = −ω(0) ∈ H 7
2
, besides u (z) ∈ W 4

2,π
4
. Thus, ImP0 = W 4

2,π
4
. Fur-

ther, given that ‖P0u‖H2, π4

=
∥∥u(4) −A4u

∥∥
H2, π4

≤ const ‖u‖W 4
2, π4

, from Banach’s

inverse operator theorem we get the validity of the theorem. J

Now we prove the following theorem.

Theorem 2. Let the conditions 1), 2) and the inequality

3∑
j=1

Nj ‖B4−j‖ < 1

holds, where

Nj = sup

06=u∈
◦
W

4

2, π4

∥∥∥A4−ju(j)
∥∥∥
H2, π4

‖P0u‖−1
H2, π4

, j = 1, 2, 3.

Then the problem (2), (3) is regularly solvable.

Proof. Replacing u(z) = ω(z) + e−zAϕ, ϕ ∈ H 7
2
, from equation (2) we obtain

P0

(
d

dz

)
ω(z) + P1

(
d

dz

)
ω(z) = −P1

(
d

dz

)
e−zAϕ.

It’s obvious that

‖g(z)‖H2, π4

≡
∥∥∥∥P1

(
d

dt

)
e−zAϕ

∥∥∥∥
H2, π4

≤
3∑
j=1

‖B4−j‖
∥∥A4−jAje−zAϕ

∥∥
H2, π4

≤

≤
3∑
j=1

‖B4−j‖
∥∥A4e−zAϕ

∥∥
H2, π4

≤ const ‖ϕ‖7/2 ,

i.e. g(z) = −P1

(
d
dz

)
e−zAϕ ∈ H2,π

4
. So, given that ω (0) = 0, we obtain the

following equation for ω :

Pω = P0ω + P1ω = g, ω ∈
◦
W

4

2,π
4
, g ∈ H2, π

4
.

Since P0 is an isomorphism, after replacement υ = P0ω we obtain the equation(
E + P1P

−1
0

)
υ = g in the space H2, π

4
. As

∥∥P1P
−1
0 υ

∥∥
H2, π4

= ‖P1ω‖H2, π4

≤
3∑
j=1

‖B4−j‖
∥∥∥A4−jω(j)

∥∥∥
H2, π4

≤
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≤
3∑
j=1

Nj ‖B4−j‖ ‖P0ω‖H2, π4

< ‖υ‖H2, π4

,

we have
υ =

(
E + P1P

−1
0

)−1
g,

and
ω = P−1

0

(
E + P1P

−1
0

)−1
g.

It easily follows that

‖ω‖W 4
2, π4

≤ const ‖g‖H2, π4

≤ const ‖ϕ‖ 7
2
.

Thus, u(z) = ω (z) + e−zAϕ is a regular solution to the problem (2), (3), and

‖u‖W 4
2, π4

≤ const ‖ϕ‖ 7
2
. J

From this theorem it is clear that in order to find the solvability conditions for
the boundary value problem (2), (3), it is necessary to find the exact values Nj ,
j = 1, 2, 3, or estimate them from above. To this end, we prove some statements.

Lemma 2. For β ∈
[
0, d−2

4,j

)
, where the numbers d4,j are defined by the equalities

(4), polynomial operator pencils

Pj (λ; β; A) = (iλ)8E + 2 (iλ)4A4 +A8 − β (iλ)2j A8−2j , j = 1, 2, 3,

are represented as

Pj (λ; β; A) = φj (λ; β; A)φj (−λ; β; A) , (5)

where the operator pencil

φj (λ; β; A) = λ4E +A4 + α1,j (β)λA3 + α2,j (β)λ2A2 + α3,j (β)λ3A,

φj (λ; β; A) has a spectrum only from the left half-plane, and the numbers
αl,j (β) , l = 1, 2, 3, satisfy the relations

a) for j = 1: α2
1,1 (β) − 2α2,1 (β) = −β, α2

2,1 (β) = 2α1,1 (β)α3,1 (β) ,

α2
3,1 (β) = 2α2,1 (β) ;

b) for j = 2: α2
1,2 (β) = 2α2,2 (β) , α2

2,2 (β) − 2α1,2 (β)α3,2 (β) = −β,
α2

3,2 (β) = 2α2,2 (β) ;

c) for j = 3: α2
1,3 (β) = 2α2,3 (β) , α2

2,3 (β) = 2α1,3 (β)α3,3 (β) ,

α2
3,3 (β)− 2α2,3 (β) = −β.



On Completeness of Root Vectors 201

Proof. It is evident that for µ ∈ σ (A) the polynomial Pj (λ; β; µ) has no

roots on the imaginary axis if β ∈
[
0, d−2

4,j

)
. Therefore, it can be represented as

Pj (λ; β; µ) = φj (λ; β; µ)φj (−λ; β; µ) ,

where

φj (λ; β; µ) = (λ− µω1,j (β)) (λ− µω2,j (β)) (λ− µω3,j (β)) (λ− µω4,j (β )) ,

and Reωk,j (β) < 0, k = 1, 4. Using the spectral decomposition of the operator
A, we obtain the representation (5), and the relations a), b), and c) are obtained
by comparing identical powers of λ in the representation (5). J

This lemma implies

Lemma 3. For any u ∈W 4
2 (R+;H) the equality∥∥∥∥φj ( d

dt
;β;A

)
u

∥∥∥∥2

L2(R+;H)

+ (Sj (β;A) ϕ̃, ϕ̃)H4 =

=
∥∥∥u(4) +A4u

∥∥∥2

L2(R+;H)
− β

∥∥∥A4−ju(j)
∥∥∥2

L2(R+;H)
, j = 1, 2, 3,

is true, where

ϕ̃ =
(
ϕν = A4−ν− 1

2u(ν) (0)
)3

ν=0
,

and

Sj (β) =


α1,j α2,j α3,j 0
α2,j α1,jα2,j − α3,j α1,jα3,j α1,j

α3,j α3,jα1,j α3,jα2,j − α1,j α2,j

0 α1,j α2,j α3,j

 .

Proof. Integrating by parts and taking into account the relations a), b), and
c), we obtain ∥∥∥∥φj ( d

dt
;β;A

)
u

∥∥∥∥2

L2(R+;H)

=
∥∥∥u(4)

∥∥∥2

L2(R+;H)
+

+2
∥∥A2u′′

∥∥2

L2(R+;H)
+
∥∥A4u

∥∥2

L2(R+;H)
− (Qj (β) ϕ̃, ϕ̃)H4 ,

where all elements of the matrix Qj (β) are equal to the elements of the matrix
Sj (β) , except

q4,1 = 1, q3,2 = α1,jα2,j − 1, q2,3 = α3,jα2,j − 1, q1,4 = 1.
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On the other hand,∥∥∥u(4) +A4u
∥∥∥2

L2(R+;H)
=
∥∥∥u(4)

∥∥∥2

L2(R+;H)
+ 2

∥∥A2u′′
∥∥2

L2(R+;H)
+

+
∥∥A4u

∥∥2

L2(R+;H)
− (Q0ϕ̃, ϕ̃)H4 ,

where all elements of the matrix Q0 are zero except for
0
q4,1 = 1,

0
q3,2 = −1,

0
q2,3 =

−1,
0
q1,4 = 1.

Thus, ∥∥∥∥φj ( d

dt
;β;A

)
u

∥∥∥∥2

L2(R+;H)

+ ((Qj (β)−Q0) ϕ̃, ϕ̃)H4 =

=
∥∥∥u(4) +A4u

∥∥∥2

L2(R+;H)
− β

∥∥∥A4−ju(j)
∥∥∥2

L2(R+;H)
.

This implies the assertion of the lemma. J

Theorem 3. Let β ∈
[
0, d−2

4,j

)
and u ∈

◦
W

4

2,π
4

. Then the following equality is

true:∥∥∥∥P0

(
d

dz

)
u

∥∥∥∥2

H2, π4

− β
∥∥∥A4−ju(j) (z)

∥∥∥2

H2, π4

=
1

2

∥∥∥∥φj ( d

dt
;β;A

)
u+

∥∥∥∥2

L2(R+;H)

+

+
1

2

∥∥∥∥φj ( d

dt
;β;A

)
u−

∥∥∥∥2

L2(R+;H)

+

(
0
Sj (β) ϕ̃π

4
, ϕ̃π

4

)
H3

, j = 1, 2, 3, (6)

where

ϕ̃π
4

=
(
ϕν = A4−ν− 1

2u(ν) (0)
)3

ν=1
, u± = u

(
te±i

π
4

)
,

and

0
Sj (β) =

 α1,jα2,j − α3,j
1√
2
α1,jα3,j 0

1√
2
α1,jα3,j α3,jα2,j − α1,j

1√
2
α2,j

0 1√
2
α2,j α3,j

 .

Proof. We have:∥∥∥∥P0

(
d

dz

)
u (z)

∥∥∥∥2

H2, π4

=
∥∥∥u(4) (z)−A4u (z)

∥∥∥2

H2, π4

=

=
1

2

∥∥∥u(4)
+ e−4· iπ

4 −A4u+

∥∥∥2

L2(R+;H)
+
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+
1

2

∥∥∥u(4)
− e4·i·π

4 −A4u−

∥∥∥2

L2(R+;H)
=

=
1

2

∥∥∥u(4)
+ +A4u+

∥∥∥2

L2(R+;H)
+

1

2

∥∥∥u(4)
− +A4u−

∥∥∥2

L2(R+;H)
.

Then from Lemma 3 and from the relation ∂l

∂tl
u
(
teiϕ

)
= eilϕ dl

dtl
u
(
teiϕ

) (
z = teiϕ

)
,

we obtain ϕ̃π
4

= Ũ ϕ̃, ϕ̃−π
4

= Ũ−1ϕ̃, where Ũ = diag
(
ei

π
4 , e2i π

4 , e3i π
4

)
. Theorem

is proved. J

Theorem 4. The following estimates are true:

N1 ≤ 2−
3
4 , N2 ≤

(
18

35 +
√

73

) 1
2

, N3 ≤ 3−
1
4 .

Proof. Obviously, when β = 0, α1,j (0) = α3,j (0) = 2
√

2, α2,j (0) = 4. Then

it is easy to see that
0
Sj (0) > 0. Therefore, the first eigenvalue of the matrix

0
Sj (β) > 0 for small β > 0. Further, if Nj > d4,j , then N−2

j ∈
(

0, d−2
4,j

)
.

In this case, for β ∈
(
N−2
j , d−2

4,j

)
, by the definition of Nj , there is a function

uβ (z) ∈
◦
W

4

2,π
4

such that ‖P0uβ‖2H2, π4

< β
∥∥A4−ju(j)

∥∥2

H2, π4

. Then from equality

(6) we find that the first eigenvalue of the matrix
0
Sj (β) is less than zero for

β ∈
(
N−2
j , d−2

4,j

)
. Thus, the first eigenvalue λ

(1)
j (β) vanishes at some points in

the interval
(

0, d−2
4,j

)
. Consequently, the equation det

0
Sj (β) = 0 has a solution

from the interval
(

0, d−2
4,j

)
and it is obvious that N−2

j ≥ µj (0), where µj (0) is

the smallest root of det
0
Sj (β) = 0 in the interval

(
0, d−2

4,j

)
. But if Nj ≤ d4,j and

µj (0) does exist, then it is evident that again Nj ≤ µ
1
2
j (0). It follows from the

above that we must solve the equation det
0
Sj (β) = 0 with regard to the equalities

a), b), or c). For example, for j = 1, from the equation det
0
Sj (β) = 0 with

regard to condition a), we obtain α2,1 =
√

8, α3,1 = 2 4
√

8, α1,1 = 4
√

8. Therefore,

β = 2α2,1−α2
1,1 =

√
8, i.e., µ1 (0) =

√
8 ∈

(
0, d−2

4,j

)
. Then N1 ≤

(√
8
)− 1

2 = 2−
3
4 .

Similarly, for j = 2 we have µ2 (0) = 35+
√

73
18 , and for j = 3, µj (0) =

√
3.

Therefore, N2 ≤
(

18
35+
√

73

) 1
2
, N3 ≤ 3−

1
4 . J
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Thus, we obtain the theorem on the solvability of the boundary value problem
(2), (3).

Theorem 5. Let the conditions 1, 2) and the inequality

τ = 2−
3
4 ‖B3‖+

(
18

35 +
√

73

) 1
2

‖B2‖+ 3−
1
4 ‖B1‖ < 1, (7)

hold. Then the boundary value problem (2), (3) is regularly solvable.

The following theorem is valid.

Theorem 6. Let the conditions 1) and 2) A−1 ∈ σρ (0 < ρ <∞) and one of the
following conditions be satisfied: a) τ < 1 for 0 < ρ ≤ 2, τ < sin π

ρ for 2 ≤ ρ <∞;

b) τ < 1, the operators Bj = AjA
−j , j = 1, 2, 3, are completely continuous in

H, where the number τ is determined from the inequality (7). Then the system
K
(
π
4

)
is complete in H 7

2
.

Proof. From the results obtained in [1, 2, 4, 11] it follows that if A−1 ∈
σρ (0 < ρ <∞), then A4P−1 (λ) is represented as a ratio of two integer functions
of order not higher than ρ and of minimal type with order ρ. Under the conditions
of this theorem, the boundary value problem (2), (3) is regularly solvable. Then
for any ϕ ∈ H 7

2
there is a solution to the problem u (z) ∈ W 4

2,π
4
. If K

(
π
4

)
is not

complete, then there is a vector ϕ ∈ H 7
2

orthogonal to the system K
(
π
4

)
in space

H 7
2
. Then, using the form of the regular solution we have

u(z) =
1

2πi

2∑
k=1

(−1)k
∫

Γk

û (λ) eλzdλ,

where û (λ) = P−1 (λ) · r (λ), r (λ) are third order vector functions with respect
to λ. In this case, for z ∈ Sπ

4

(u(z), ϕ) 7
2

=
(
A

7
2u(z), A

7
2ϕ
)

=

=
1

2πi

2∑
k=1

(−1)k
∫

Γk

(
A

7
2P−1 (λ) r (λ) , A

7
2ϕ
)
eλzdλ =

=
1

2πi

2∑
k=1

(−1)k
∫

Γk

(
r (λ) ,

(
A

7
2P−1 (λ)

)∗
A

7
2ϕ
)
eλzdλ.
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As
(
A

7
2P−1 (λ)

)∗
A

7
2ϕ is an integer function of order not higher than ρ, S (λ) =(

r (λ) ,
(
A

7
2P−1 (λ)

)∗
A

7
2ϕ
)

is also an integer function of order not higher than ρ.

It is evident that the function S (λ)→ 0 as λ→ 0, λ ∈ C\S̃π
4

and has boundary
values on the rays Γk, k = 1, 2. On the other hand, in case a), for 0 < ρ ≤ 2
on the rays Γk, k = 1, 2, we have ‖S (λ)‖ ≤ const |λ|4. Then, by the Phragmén–
Lindelöf theorem, this estimate holds on the entire complex domain. It follows
that the polynomial S (λ) =

∑4
k=0 bkλ

k. Then (u(z), ϕ) 7
2

= 0 for z ∈ Sπ
4
. Hence,

when z → 0, z ∈ Sπ
4

we obtain ‖ϕ‖2 = 0, i.e., ϕ = 0. If, in case a), 2 ≤ ρ < ∞,

it is obvious that on the rays Γ±ρ =
{
λ : arg λ = π ± π

2ρ

}
we have

∥∥P1 (λ)P−1
0 (λ)

∥∥ ≤ 3∑
j=1

‖B4−j‖
∥∥λjA4−jP−1

0 (λ)
∥∥

and ∥∥λjA4−jP−1
0 (λ)

∥∥ = sup
µ∈σ(A)

∣∣∣∣rjµ4−j
(
r8 + µ8 − 2r4µ4 cos 2π

ρ

)− 1
2

∣∣∣∣ ≤

≤ sup
µ∈σ(A)

∣∣∣∣rjµ4−j (r4 + µ4
)−1

(
1− 2r4µ4

(
r4 + µ4

)−2
(

1 + cos 2π
ρ

))− 1
2

∣∣∣∣ ≤

≤ d4,j

(
1− cos2 π

ρ

)− 1
2

= d4,j sin−1 π

ρ
.

Therefore, when τ < sin π
ρ , on the rays Γ±ρ there exists

P−1 (λ) = P−1
0 (λ)

(
E + P1 (λ)P−1

0 (λ)
)−1

,

and again, repeating the same reasoning, we obtain ϕ = 0. In case b), from the
existence of a solution of the boundary value problem (2), (3) for τ < 1 and
from the Keldysh lemma [11], it follows that for 0 < ρ < ∞ we can apply the
Phragmén–Lindelöf theorem and obtain ϕ = 0. J

Theorem 7. Let the conditions of Theorem 6 hold. Then the system of ele-
mentary holomorphic solutions of equation (2) is complete in the space of regular
holomorphic solutions of the boundary value problem (2), (3).
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Proof. Obviously, the space of regularly holomorphic solutions of the bound-
ary value problem (2), (3) is closed. Then from the theorems on traces and
uniqueness of regularly holomorphic solutions it follows that

c1 ‖ϕ‖ 7
2
≤ ‖u‖W 4

2, π4

≤ c2 ‖ϕ‖ 7
2
.

As the system K
(
π
4

)
is complete in H 7

2
, for any ε > 0 we can find numbers

cNh, n, j (ε) such that ∥∥∥∥∥∥ϕ−
N∑
n=1

∑
(h,j)

cNh, n, j (ε)xh, n,j

∥∥∥∥∥∥
7
2

<
ε

c2
.

Then, given that ϕ = u (0) , xh, n,j = uh, n,j (0), it follows∥∥∥∥∥∥u−
N∑
n=1

∑
(h,j)

cNh, n, j (ε)uh, n,j

∥∥∥∥∥∥ < ε. J
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