
Azerbaijan Journal of Mathematics
V. 9, No 2, 2019, July
ISSN 2218-6816

Basis Properties of Trigonometric Systems inWeighted
Morrey Spaces

B.T. Bilalov∗, A.A. Huseynli, S.R. El-Shabrawy

Abstract. In this paper, the basis properties (completeness, minimality and basicity)
of the system of exponents are investigated in weighted Morrey spaces, where the weight
function is defined as a product of power functions. Although the same properties of
the system of exponents, as well as their perturbations, are well studied in weighted
Lebesgue spaces, the situation changes cardinally in Morrey spaces. For instance, since
Morrey spaces are not separable, the first difficulty arises concerning the formulation of
the problem: to find the “suitable” subspace, in which the above mentioned properties
have a “chance” to be true. Another difficulty, that frustrates the “usual” attempts is
that, the infinite differentiable functions (even continuous functions) are not dense in
Morrey spaces. Nevertheless, there are works that study these problems. For example,
in [8], the basis properties of the system of exponents in Morrey space have been studied.
Also, in [9, 7] the basis properties of the perturbed systems of exponents in Morrey space
have been investigated. On the other hand, some approximation problems have been
investigated in Morrey-Smirnov classes in [22].
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1. Introduction

Morrey spaces were introduced by Charles B. Morrey, see [31], in the study of
partial differential equations, and presented in various books, see [18, 25, 44, 1],
survey papers [36, 37, 32] and the references therein. The surge of interest in
Morrey-type spaces during the last decade allows to consider the basis proper-
ties of systems in such spaces in order to fill the gaps in the theory of Morrey
spaces. These problems arise naturally in the solution of many partial differential
equations by the Fourier method.
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Some authors have studied the basis properties of trigonometric systems in
Banach function spaces. Well-known results concerning the basis properties of
the systems of exponents in the case of the Lebesgue space Lp (1 < p < ∞),
can be found in [15, 16, 46, 24]. Babenko [2] has proved that the degenerate
system of exponents

{
|t|α eint

}
n∈Z with |α| < 1

2 forms a basis for L2 (−π, π) but
does not form a Riesz basis when α 6= 0, where Z is the set of integers. This
result has been generalized by Gaposhkin [17]. In [23], the conditions on the
weight function ρ, for which the system

{
eint
}
n∈Z forms an unconditional basis

for the weighted Besov space have been obtained. Similar problems have been
studied in [26, 11, 12, 19, 41, 6]. The basicity of the systems of sines and cosines
with degenerate coefficients have been analyzed by many authors. Amongst the
Banach spaces where the basicity are known we mention the Lebesgue space Lp,
(1 < p <∞), [10, 38]. Basis properties of the linear phase systems of sines, cosines
and exponents in weighted Lebesgue spacees have been studied in [27, 28, 35];
see also [3, 4, 5].

The basis properties of the systems of sines, cosines and exponents in Morrey
spaces have been much less studied. In [8], the basis properties of the system of
exponents in Morrey space have been studied. Also, in [9, 7] the basis properties of
the perturbed systems of exponents in Morrey space have been investigated. On
the other hand, some approximation problems have been investigated in Morrey-
Smirnov classes in [22].

We will use the standard notations. Denote the set of positive integers by N
and the set of nonnegative integers by N0. We denote by L[M ] the linear span
of the set M . M will stand for the closure of the set M . X∗ will denote the
conjugate space of a space X. ‖ · ‖∞ means sup-norm.

Our aim in this paper is to study the basis properties of the systems {sinnt}n∈N
and {cosnt}n∈N0

in weighted Morrey space Lp,λν (0, π) defined by a product of
power weights of the form

ν(t) =
r∏

k=0

|t− tk|αk , t ∈ [0, π] , (1)

where t0 = 0, tr = π, and tk are arbitrary finite points in the interval (0, π) for
all k = 1, 2, ..., r − 1 and αk ∈ R for all k = 0, 1, ..., r. The basis properties of
the system

{
eint
}
n∈Z in weighted Morrey space Lp,λν (−π, π) are also considered,

where

ν(t) =
r∏

k=0

|t− tk|αk , t ∈ [−π, π] , (2)

and tk are arbitrary finite points in the interval [−π, π] and αk ∈ R for all
k = 0, 1, ..., r.
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Although the basis properties of trigonometric systems, as well as their per-
turbations, are well studied in weighted Lebesgue spaces, the situation changes
cardinally in Morrey spaces. For instance, since the functional characterization
of dual spaces of Morrey spaces is not known, this creates additional difficulties.
Another difficulty, that frustrates the “usual” attempts is that the infinitely dif-
ferentiable functions (even continuous functions) are not dense in Morrey spaces,
but we still seek to prove “density” property of trigonometric functions, which
are infinitely differentiable. For these reasons, unlike the Lp case, we will use
here different methods to study the basis properties (especially completeness and
basicity) in weighted Morrey spaces.

The paper is organized as follows. In Section 2 we state some basic definitions
and facts related to Morrey-type spaces and singular operators to be used later.
Also, we prove results required for the proofs of our main results. In Section 3,
the main results are presented. We obtain sufficient conditions for the minimality
and basicity. Furthermore, necessary and sufficient conditions for the complete-
ness are stated. Section 4 concludes the paper with the suggestions for further
research.

Note that the completeness of the system of cosines has been recently studied
in [47].

2. Preliminaries

2.1. (Weighted) Morrey space on an interval

For 1 < p < ∞ and 0 ≤ λ < 1 we define the Morrey space Lp,λ(a, b) as the
set of functions f on (a, b) such that

‖f‖p,λ := ‖f‖Lp,λ(a,b) = sup
I⊂(a,b)

 1

|I|λ

∫
I

|f(t)|p dt

 1
p

<∞,

where I ⊂ (a, b) is any interval. It is clear that Lp,λ(a, b) are Banach spaces.
Morrey spaces can be defined in a more general way (see e.g. [1, 31, 32, 36, 37, 45])
but this is enough for our purposes. The Lp(a, b) spaces with the Lebesgue

measure correspond to the case λ = 0. The weighted Morrey space Lp,λν (a, b) is
defined in the usual way:

Lp,λν (a, b) :=
{
f : νf ∈ Lp,λ(a, b)

}
,

with ‖f‖p,λ;ν := ‖νf‖p,λ. The function ν is called the weight or weight function
of this space.
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It is evident that the space Lp,λν (a, b) contains constant functions if and only
if ν ∈ Lp,λ(a, b). Throughout this paper, unless otherwise stated, we will assume
that 1 < p, q < ∞, p−1 + q−1 = 1 and 0 < λ < 1. Also, the letter ”c” denotes
a positive constant, which is not necessarily the same at each occurrence but is
independent of essential variables and quantities. The expression f∼g, t → a
means that in sufficiently small neighborhood Oδ of the point t = a, the inequal-

ities 0 < δ ≤
∣∣∣f(t)g(t)

∣∣∣ ≤ δ−1 < ∞ hold. If the last inequalities hold on an interval

I, we write f∼g on I. For example, sin t∼t(π − t) on [0, π] .
By the basis properties we mean the minimality, the completeness and the

basicity. We assume here some familiarity with basic concepts of basis theory and
we refer to the books of Heil [20], Christensen [13], Singer [42, 43] and Bilalov
B.T. [6] for basic concepts such as complete and minimal systems and bases in
Banach spaces.

The following lemma has been proved by Samko [39] in the case of Morrey
space on a bounded rectifiable curve. In our case it reads

Lemma 1. The power function |t− t0| α, t0 ∈ [a, b] , belongs to the Morrey space

Lp,λ(a, b) if and only if α ∈
[
λ−1
p ,∞

)
.

The above lemma implies the following

Proposition 1. Let ν be given as in (1). Then

1. {sinnt}n∈N ⊆ L
p,λ
ν (0, π), 0 < λ < 1, if and only if

α0, αr ∈
[
λ− 1

p
− 1,∞

)
and αk ∈

[
λ− 1

p
,∞
)
, for all k = 1, 2, ..., r − 1. (3)

2. {cosnt}n∈N0
⊆ Lp,λν (0, π), 0 < λ < 1, if and only if

αk ∈
[
λ− 1

p
,∞
)
, for all k = 0, 1, 2, ..., r. (4)

Proposition 2. Let ν be given as in (2). Then,
{
eint
}
n∈Z ⊆ L

p,λ
ν (−π, π) if and

only if conditions (4) are satisfied.

Remark 1. The case λ > 0 differs from the case λ = 0: when λ = 0, conditions
(3) must be replaced by the conditions

α0, αr ∈
(
−1

p
− 1,∞

)
and αk ∈

(
−1

p
,∞
)
, for all k = 1, 2, ..., r − 1.

Also, for λ = 0, conditions (4) must be replaced by the conditions

αk ∈
(
−1

p
,∞
)
, for all k = 0, 1, 2, ..., r.
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If ν is given as in (2), the basis properties of the system
{
ν(t)eint

}
n∈Z, with

degenerate coefficient ν = ν(t), in the Morrey space Lp,λ(−π, π) are the same
as the corresponding basis properties of the system

{
eint
}
n∈Z in the weighted

Morrey space Lp,λν (−π, π). As an example, we mention the following proposition
concerning the minimality.

Proposition 3. Let ν be given as in (2) under conditions (4). The system{
ν(t)eint

}
n∈Z is minimal in Lp,λ(−π, π) if and only if the system

{
eint
}
n∈Z is

minimal in Lp,λν (−π, π).

Proof. Let
{
ν(t)eint

}
n∈Z be minimal in Lp,λ(−π, π) and take ` ∈ Z. Then

ν(t)ei`t /∈ span
{
ν(t)eint

}
n6=` ,

where the closure is in the space Lp,λ(−π, π). So, there exists ε > 0 such that∥∥∥νei`t − g∥∥∥
p,λ
≥ ε, for all g ∈ span

{
ν(t)eint

}
n6=` .

Therefore∥∥∥ei`t − h∥∥∥
p,λ;ν

=
∥∥∥νei`t − νh∥∥∥

p,λ
≥ ε, for all h ∈ span

{
eint
}
n6=` .

This proves the minimality of the system
{
eint
}
n∈Z in Lp,λν (−π, π). The second

part can be proved analogously. J

By similar arguments, it can be shown that the system
{
ν(t)eint

}
n∈Z is com-

plete in (forms a basis for) Lp,λ(−π, π) if and only if the system
{
eint
}
n∈Z is

complete in (forms a basis for) Lp,λν (−π, π). Similar results can be obtained for
the systems of sines and cosines.

2.2. Auxiliary propositions

Let us start by considering the space

(
Lp,λ

)′
=

{
g : sup
‖f‖p,λ=1

‖f g‖L1
< +∞

}
,

with the norm

‖g‖
(Lp,λ)

′ = sup
f∈Lp,λ,‖f‖p,λ=1

‖fg‖L1 .
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It can be proved that
(
Lp,λ

)′
is a normed space and the following inequality is

satisfied
‖fg‖L1 ≤ ‖f‖p,λ ‖g‖(Lp,λ)′ , (5)

for all f ∈ Lp,λ and g ∈
(
Lp,λ

)′
.

Now, we will prove the following

Lemma 2. |t|β ∈
(
Lp,λ(−π, π)

)′
⇐ β ∈

(
−λ−1

p − 1,∞
)
, 0 ≤ λ < 1, 1 < p <

+∞.

Proof. Firstly, suppose β ∈
(
−λ−1

p − 1,∞
)

. Then, for all f ∈ Lp,λ(−π, π),

we have ∫ π

−π
|t|β |f(t)| dt =

∞∑
k=1

∫
|t|∈[2−k−1π,2−kπ]

|t|β |f(t)| dt

≤ c
∞∑
k=1

2−kβ
∫
|t|∈[2−k−1π,2−kπ]

|f(t)| dt

≤ c
∞∑
k=1

2−kβ2
−k

(
1− 1

p

)(∫
|t|∈[−2−kπ,2−kπ]

|f(t)|p dt

) 1
p

= c

∞∑
k=1

2
−k

(
β+1− 1

p
+λ
p

)
‖f‖p,λ ≤ c ‖f‖p,λ .

Then, |t|β ∈
(
Lp,λ(−π, π)

)′
.

Conversely, suppose that β /∈
(
−λ−1

p − 1,∞
)

. That is β + λ−1
p ≤ −1. Then,

|t|
λ−1
p ∈ Lp,λ(−π, π) and∫ π

−π
|t|β |t|

λ−1
p dt =

∫ π

−π
|t|β+

λ−1
p dt =∞.

Thus |t|β /∈
(
Lp,λ

)′
. This completes the proof. J

The case Lp,λ(0, π) is similar and can be treated as in the following lemma.

Lemma 3. |t|β ∈
(
Lp,λ(0, π)

)′
⇐ β ∈

(
−λ−1

p − 1,∞
)
, 0 ≤ λ < 1, 1 < p < +∞.

Proof. Firstly, suppose β ∈
(
−λ−1

p − 1,∞
)

. Then, for all f ∈ Lp,λ(0, π), we

have ∫ π

−π
|t|β |f(t)| dt =

∞∑
k=1

∫
t∈[2−k−1π,2−kπ]

|t|β |f(t)| dt
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≤ c
∞∑
k=1

2−kβ
∫
t∈[2−k−1π,2−kπ]

|f(t)| dt

≤ c
∞∑
k=1

2−kβ2
−k

(
1− 1

p

)(∫
t∈[2−k−1π,2−kπ]

|f(t)|p dt

) 1
p

= c

∞∑
k=1

2
−k

(
β+1− 1

p
+λ
p

)
‖f‖p,λ ≤ c ‖f‖p,λ .

Then, |t|β ∈
(
Lp,λ(0, π)

)′
.

Conversely, suppose that β /∈
(
−λ−1

p − 1,∞
)

. That is β + λ−1
p ≤ −1.

Then, |t|
λ−1
p ∈ Lp,λ(0, π) and∫ π

0
|t|β |t|

λ−1
p dt =

∫ π

0
|t|β+

λ−1
p dt =∞.

Thus |t|β /∈
(
Lp,λ

)′
. This completes the proof. J

Next, we give the following

Proposition 4. The relations

{sinnt}n∈N ⊆ L
p,λ
ν (0, π) and ν−1(t) sinnt ∈

(
Lp,λ(0, π)

)′
are true if and only if

α0, αr ∈
[
λ− 1

p
− 1,

1− λ
q

+ λ+ 1

)
and {αk}r−1k=1 ⊂

[
λ− 1

p
,
1− λ
q

+ λ

)
,

0 < λ < 1, 1 < p < +∞. (6)

Proof. We have

ν−1(t) sinnt ∈
(
Lp,λ

)′
⇐ {|t|1−α0 ,

|t− π|1−αr , |t|−αk} ∈
(
Lp,λ

)′
, for k = 1, ...r − 1.

By using Lemma 1, we obtain

ν−1(t) sinnt ∈
(
Lp,λ

)′
⇐ 1− α0 +

λ− 1

p
> −1,
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1− αr +
λ− 1

p
> −1 and − αk +

λ− 1

p
> −1, for k = 1, ...r − 1.

That is

ν−1(t) sinnt ∈
(
Lp,λ

)′
⇐ α0, αr ∈

[
−∞, 1− λ

q
+ λ+ 1

)
and

{αk}r−1k=1 ⊂
[
−∞, 1− λ

q
+ λ

)
,

where 1
p + 1

q = 1. The proof is completed thanks to the fact that {sinnt}n∈N ⊆
Lp,λν (0, π) if and only if conditions (5) are satisfied. J

2.3. Zorko subspace of weighted Morrey space

Denote by C∞0 [−π, π] the set of all infinitely differentiable functions with
compact support in (−π, π). Note that functions in Lp,λ (−π, π) can not be
approximated by functions in C∞0 [−π, π], nor even by continuous functions. That
is the set C∞0 [−π, π] is not dense in Lp,λ (−π, π) (c.f. [5,35]). This fact stays valid
in the weighted setting of Morrey space. For example, let ν be given as in (2)
under conditions (4). Let τ0 6= tk , ∀k = 0, r , τ0 ∈ (−π, π) be any points. Then,
there exists sufficianly small δ0 > 0, such that

tk /∈ Oδ0 ⊂ (−π, π) , ∀k = 0, r ,

where Oδ0 = [τ0, τ0 + δ0]. Then it’s clear that g±δ0 (t) = χOδ0 (t) ν±1 (t) is a con-
tinuous function on [−π, π]. Consider the function

f (t) = |t− τ0|
λ−1
p ν−1 (t) .

It’s obvious that f ∈ Lp,λν (−π, π). Let g ∈ C [−π, π] be any function. From (4)

it follows that g ∈ Lp,λν (−π, π). We have

‖f − g‖
Lp,λν (−π,π) ≥ ‖f − g‖Lp,λν (Oδ0) =

= ‖fν − gν‖Lp,λ(Oδ0) = ‖F −G‖Lp,λ(Oδ0) ,

where F (t) = |t− τ0|
λ−1
p ∈ Lp,λ (Oδ0), G = gν ∈ C (Oδ0). For the rest one needs

to follow the corresponding example of Zorko [1, 45].
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Let f (·) be the given function on [a, b]. To determine the Zorko type subspace
we will assume that the function f (·) is continued to [2a− b, 2b− a] as follows
(and the newly obtained function is also denoted by f (·)):

f (x) =

{
f (2a− x) , x ∈ [2a− b, a) ,
f (2b− x) , x ∈ (b, 2b− a] .

So, following Zorko [45], we consider the subspace

∼
Lp,λν (a, b) :=

{
f ∈ Lp,λν (a, b) : ‖f(.+ δ)− f(.)‖p,λ;ν → 0 asδ → 0

}
,

where ν is given as in (2) under conditions (4). We will refer to this sub-

space as the Zorko subspace of Lp,λν (a, b). Also, we consider the Lp,λν -closure

of
∼
Lp,λν (a, b) and denote it by Mp,λ

ν (a, b). It is easy to see that if ν ∈ Lp,λ (a, b) ,

then C [−a, b] ⊂ Mp,λ
ν (a, b). In fact, let f ∈ C [a, b] be an arbitrary function

and δ be an arbitrary number (with |δ| sufficiently small). It is obvious that the
extended function f (·) is continuous on [2a− b, 2b− a]. We have

‖f (·+ δ)− f (·)‖p,λ,ν = sup
I⊂(a,b)

(
1

|I|λ

∫
I
|(f (t+ δ)− f (t)) ν (t)|p dt

)1/p

≤

≤ sup
t∈[a,b]

|f (t+ δ)− f (t)| ‖ν‖p,λ → 0, δ → 0.

Thus we have the following

Lemma 4. If ν ∈ Lp,λ (a, b), then C[a, b] ⊂Mp,λ
ν (a, b).

Since Mp,λ
ν (a, b) is a closed subspace of Lp,λν (a, b), it also contains the Lp,λν -

closure of C∞0 [a, b]; in fact, Mp,λ
ν (a, b) is precisely that closure.

Proposition 5. Let ν be given as in (2) and the following condition hold:

αk ∈
[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 0, r. (7)

Then the set C∞ [−π, π] is dense in Mp,λ
ν (−π, π).

We need the following lemma.
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Lemma 5. [Minkowski inequality for integrals in weighted Morrey spaces] Let
(X;Xσ;µ) be a measurable space with a σ-additive measure µ (·) on a set X,
ν = ν(t) a weight function, dy a linear Lebesgue measure on an interval (a, b)
and F (x, y) be µ× dy-measurable. If 1 ≤ p <∞, then∥∥∥∥∫

X
F (x, y)dµ(x)

∥∥∥∥
p,λ;ν

≤
∫
X
‖F (x, y)‖p,λ;ν dµ(x).

Proof. By using the Minkowski inequality for integrals in Lp(a, b)∥∥∥∥∫
X
F (x, y)ν(y)dµ(x)

∥∥∥∥
Lp

≤
∫
X
‖F (x, y)ν(y)‖Lp dµ(x),

we have(∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p

≤
∫
X

(∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x),

where Br (x) is a ball with a radius r > 0 centered at x ∈ X. Then(
1

rλ

∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p

≤
∫
X

(
1

rλ

∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x).

The required result follows by taking the supremum over all x ∈ (a, b) and r > 0
in the last inequality. J

It is now easy to provide the
Proof of Proposition 5. Let f ∈ Mp,λ

ν (−π, π), and ε > 0 be a sufficiently
small number. Consider the function

wε(t) =

{
cεe

(
−ε2
ε2−t2

)
, |t| < ε,

0, |t| ≥ ε,

where cε is chosen so that
∫∞
−∞wε(t)dt = 1. Define the function fε(t) as

fε(t) =

∫ ∞
−∞

wε(s)f(t− s)ds.

As ε > 0 is sufficiently small, this definition is correct. Indeed, it is enough
to prove that f ∈ L1 (−π, π). From f ∈ Mp,λ

ν (−π, π) it follows that (fν) ∈
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Lp,λ (−π, π). Let (7) hold. By using Lemma 2 it is easy to prove that ν−1 ∈(
Lp,λ (−π, π)

)′
. Since (fν) ∈ Lp,λ (−π, π), we have f = (fν) ν−1 ∈ L1 (−π, π).

It is clear that fε(t) is infinitely differentiable function on [−π, π], and

‖fε − f‖p,λ;ν =

∥∥∥∥∫ ∞
−∞

wε(s)f(t− s)ds− f(t)

∥∥∥∥
p,λ;ν

=

∥∥∥∥∫ ∞
−∞

wε(s) [f(t− s)− f(t)] ds

∥∥∥∥
p,λ;ν

Applying Lemma 5, we get

‖fε − f‖p,λ;ν ≤
∫ ∞
−∞
‖wε(s) [f(.− s)− f(.)]‖p,λ;ν ds

≤ sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν

∫ ε

−ε
wε(s)ds

= sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν → 0 as ε→ 0.

This completes the proof. J
Similarly way we can define Mp,λ

ν (0, π) and prove the following

Proposition 6. Let ν be given as in (1) and the conditions (7) be satisfied. Then
the set C∞[0, π] of all infinitely differentiable functions with compact support in

(0, π) is dense in Mp,λ
ν (0, π).

In the sequel, we will use the following obvious facts.

If the system {xn}n∈N ⊂ Mp,λ
ν is minimal in Lp,λν , then it is also minimal in

Mp,λ
ν .

Let a Banach space X be continuously embedded in Mp,λ
ν : X ⊂Mp,λ

ν , X be
dense in Mp,λ

ν and the system {xn}n∈N ⊂ X be complete in X. Then {xn}n∈N
is complete in Mp,λ

ν , too. Indeed, let c > 0 be such that

‖f‖p,λ,ν ≤ c ‖f‖X , ∀f ∈ X,

is valid, where ‖·‖X is a norm in X. Let f ∈ Mp,λ
ν be an arbitrary function and

ε > 0 be an arbitrary number. Then ∃fε ∈ X :

‖f − fε‖p,λ,ν <
ε

2
.
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From completeness of {xn}n∈N in X it follows that ∃ {an}n=1,m:∥∥∥∥∥fε −
m∑
n=1

anxn

∥∥∥∥∥
X

<
ε

2c
.

We have∥∥∥∥∥f −
m∑
n=1

anxn

∥∥∥∥∥
p,λ,ν

≤ ‖f − fε‖p,λ,ν +

∥∥∥∥∥fε −
m∑
n=1

anxn

∥∥∥∥∥
p,λ,ν

≤ ε

2
+

+c

∥∥∥∥∥fε −
m∑
n=1

anxn

∥∥∥∥∥
X

<
ε

2
+ c

ε

2c
= ε.

Hence, the assertion follows.

Remark 2. It should be noted that, in general, Proposition 3 loses meaning in
Mp,λ
ν . Since in this case the system {ν (t) eint}n∈Z cannot belong to the space

Mp,λ.

3. Singular operators on weighted Morrey spaces

Especially relevant to our purposes is the boundedness of the singular operator

Sf(x) =
1

2π

∫ π

−π

f(t)

eit − eix
dt, x ∈ (−π, π) . (8)

The boundedness of the singular operator in the weighted Lebesgue space Lp,ρ
is closely related to the concept of the class of Muckenhoupt weights Ap. For a
fixed 1 < p < ∞, we say that a weight function ρ : (−π, π) → [0,∞) belongs
to Ap (−π, π) if there is a constant C such that, for all intervals I ⊂ (−π, π) in
(−π, π), we have(

1

|I|

∫
I
ρ(t)dt

)(
1

|I|

∫
I

(ρ(t))
− 1
p−1 dt

)p−1
≤ C <∞.

It is well-known that the singular operator S is bounded in Lp,ρ (−π, π) if and
only if ρ ∈ Ap (−π, π). The conditions

αk ∈
(
−1

p
,
1

q

)
, for all k = 0, 1, 2, ..., r, (9)

are the Muckenhoupt conditions with respect to the weight function ν(t) given in
(2). Moreover, the system of exponents

{
eint
}
n∈Z forms a basis for Lp,ρ (−π, π)

if and only if ρ ∈ Ap (−π, π); (c.f., [21]).
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Muckenhoupt weights Ap (0, π) on (0, π) are defined similarly. Definitely, the
class of weights for Morrey-type spaces for which the singular operator is bounded
differs from the Muckenhoupt class Ap of such weights for the Lebesgue space
Lp. It should depend on both p and λ. For example, in [39], the following result
has been proved.

Proposition 7. Let 0 ≤ λ < 1, 1 < p < +∞, and ν be given as in (2). The

singular operator S is bounded in the space Lp,λν (−π, π) if and only if

αk ∈
(
λ− 1

p
,
1− λ
q

+ λ

)
, for all k = 0, 1, 2, ..., r. (10)

In this paper we show that the conditions (10) are necessary and sufficient

for the basicity of the system
{
eint
}
n∈Z in Mp,λ

ν (−π, π), and sufficient for the

basicity of the systems {sinnt}n∈N and {cosnt}n∈N0
in Mp,λ

ν (0, π).
A certain candidate for the class of weights, denoted by Ap,λ, in the case of

Morrey spaces, similar to the Muckenhoupt class Ap, was introduced in [40], where
its necessity was shown for the boundedness of singular operator. Although, the
result in Proposition 7 is enough for our purposes.

Similar to [9], one can prove the following

Proposition 8. Let ν be given as in (2). Then, the singular operator S is

bounded in the space Mp,λ
ν (−π, π) if conditions (10) are satisfied.

4. The basis property of sines and cosines systems

In this section we will establish the basis properties of systems of sines and
cosines in weighted Morrey spaces.

Theorem 1. The system {sinnt}n∈N is minimal in Lp,λν (0, π) , 0 < λ < 1, 1 <
p < +∞, if conditions (6) are satisfied.

Proof. Define the sequence of linear functionals {gn} on Lp,λν (0, π) as

gn(f) =
2

π

∫ π

0
f(t) sinntdt, f ∈ Lp,λν (0, π) .

Obviously, for all n ∈ N, gn is well defined. Indeed, using Proposition 4 and
inequality (5), we obtain, for every f ∈ Lp,λν (0, π), that the function f(t) sinnt
belongs to the space L1 (0, π). Moreover,

|gn(f)| ≤ 2

π

∫ π

0
|ν(t)f(t)|

∣∣ν−1(t) sinnt
∣∣ dt
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≤ 2

π
‖νf‖Lp,λ ‖hn‖

(Lp,λ)
′ ≤ cn ‖f‖p,λ,ν , (where hn (t) = ν−1 (t) sinnt) .

This implies that {gn}n∈N is a sequence of bounded linear functionals in Lp,λν (0, π).
Furthermore, if we write sn(t) = sinnt, n ∈ N, we obtain

gn(sm) = δmn, for every m, n ∈ N.

This finishes the proof. J

From this theorem we immediately obtain the following

Corollary 1. The system of sines {sinnt}n∈N is minimal in Mp,λ
ν , 0 < λ <

1, 1 < p < +∞, if conditions (6) are satisfied.

Remark 3. When λ = 0, conditions (6) must be replaced by the conditions

α0, αr ∈
(
−1

p
− 1,

1

q
+ 1

)
and αk ∈

(
−1

p
,
1

q

)
, for all k = 1, 2, ..., r − 1.

The following theorem is proved in a completely similar way.

Theorem 2. Let the weight ν (·) be given as in (1). The system {cosnt}n∈N0
is

minimal in Lp,λν (0, π) if

αk ∈
[
λ− 1

p
,
1− λ
q

+ λ

)
,∀k = 0, r.

The following theorem was proved in [47].

Theorem 3. The system {cosnt}n∈N0
is complete in Mp,λ

ν (0, π) , 0 < λ < 1, 1 <
p < +∞, if conditions

α0;αr ∈
(
−1− λ

p
,−1− λ

p
+ 1

)
, αk ∈

[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 1, r − 1,

(11)
are satisfied.

In the case of the system of sines the situation changes cardinally. Namely,
in that case we have the following

Theorem 4. Let ν (·) be given as in (1). If: i) (11) holds, then the system

{sinnt}n∈Nis complete in Mp,λ
ν (0, π); ii) the relation

α0;αr ∈
(
−1− λ

p
− 1,−1− λ

p
+ 1

)
, αk ∈

[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 1, r − 1,

(12)
holds, then the system {sinnt}n∈N is complete in M∞ν , where M∞ν denotes the

closure of C∞0 [0, π] in Lp,λν (0, π) norm: M∞ν ≡ C∞0 [0, π].
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Proof. In case i), the proof is quite similar to the proof of Theorem 3, since

in this case Ls ⊂Mp,λ
ν (0, π), where Ls = span [{sinnt}n∈N].

Let us prove the case ii).
Let’s first show that {sinnt}n∈N ⊂ M∞ν . It is enough to show that sin kt can

be approximated in Lp,λν (0, π) by the functions from C∞0 [0, π], where k ∈ N is
any nonnegative integer. Write the function sin kt in the form

sin kt = t (π − t)β (t) , t ∈ [0, π] .

It is clear that ‖β‖∞ < +∞. Set E+
δ = (0, δ) ; E−δ = (π − δ, π). We have

‖sin kt‖
Lp,λν (E+

δ ) ≤ C ‖t‖Lp,λν (E+
δ ) ≤ C

∥∥tα0+1
∥∥
Lp,λ(E+

δ ) → 0, δ → 0,

where C is any constant independent of δ (C is assumed to be different in the
right-hand sides of the above inequality). The last inequality directly follows
from (12). In the same way we show that

‖sin kt‖
Lp,λν (E−δ ) → 0, δ → 0.

Denote

sδ (t) =

{
0 , t ∈ E+

δ

⋃
E−δ ,

sin kt, t ∈ [0, π] \
(
E+
δ

⋃
E−δ
)
.

By taking the convolution of sδ with the mollifying function ωε, in the same way
as in i) it can be proved that the function sin kt can be approximated by functions
of the form sδ ∗ ωε, for sufficiently small δ > 0 and ε > 0. As a result, we get
sinkt ∈M∞ν ,∀k ∈ N.

Now let us show that the system {sinnt}n∈N is complete in M∞ν . Assume the
contrary. Let there exist a non-zero functional ϑ∗ ∈ (M∞ν )∗ such that ϑ∗ (sinnt) =
0,∀n ∈ N. We have

ϑ∗(sin (n+ 1) t) = 0, for all n ∈ Z,

and
ϑ∗(sin (n− 1) t) = 0, for all n ∈ Z.

That is, we have

ϑ∗(sin (n+ 1) t− sin (n− 1) t) = 0, for all n ∈ Z.

This implies that

ϑ∗(sin t cosnt) = 0, for all n ∈ N0. (13)
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Denote by Lc the linear span of the system {sin t cosnt}n∈N0
:

Lc = span
[
{sin t cosnt}n∈N0

]
.

Assume

µ(t) = |t|α0+1 |t− π|αr+1
r−1∏
k=1

|t− tk|αk , t ∈ [0, π] .

So, if Theorem 4 ii) holds, then we have the inclusions {cosnt}n∈N0 ⊂ L
p,λ
µ (0, π)

and {ω (t) cosnt}n∈N0 ⊂ Lp,λν (0, π), where ω (t) = t (π − t) , t ∈ [0, π]. It fol-
lows immediately from Theorem 3 that the system {cosnt}n∈N0

is complete in

Mp,λ
µ (0, π). First let us show that any function from M∞ν can be approximated

by linear combinations of the system {sin t cosnt}n∈N0
. It suffices to prove that

an arbitrary function from C∞0 [0, π] can be approximated by linear combinations
of the system {sin t cosnt}n∈N0

. Take ∀f ∈ C∞0 [0, π] and put Sf = supp f . We
have∫

I

∣∣∣∣∣
(
f −

m∑
n=1

ak sin t cosnt

)
ν (t)

∣∣∣∣∣
p

dt∼
∫
I

∣∣∣∣∣
(
F −

m∑
n=1

ak cosnt

)
µ (t)

∣∣∣∣∣
p

dt, (14)

where F (t) = f(t)
sin t . The validity of (14) directly follows from the relation

sin t∼t (π − t) on [0, π].

It is obvious that F ∈ Lp,λµ (0, π). Let us show that F ∈Mp,λ
µ (0, π). We have∫

I
|(F (x+ δ)− F (x))µ (x)|p dx =

∫
I

∣∣∣∣( f (x+ δ)

sin (x+ δ)
− f (x)

sinx

)
sinxν (x)

∣∣∣∣p dx =

=

∫
I

∣∣∣∣(f (x+ δ) sinx− f (x) sin (x+ δ)

sin (x+ δ)
ν (x)

)∣∣∣∣p dx =

=

∫
I

∣∣∣∣[ f (x+ δ)

sin (x+ δ)
(sinx− sin (x+ δ)) + (f (x+ δ)− f (x))

]
ν (x)

∣∣∣∣p dx.
From this relation we immediately obtain

‖F (·+ δ)− F (·)‖p,λ;µ

≤ ‖f (·+ δ)− f (·)‖p,λ;ν + 2 sin
δ

2

∥∥∥∥ f (x+ δ)

sin (x+ δ)
cos

(
x+

δ

2

)∥∥∥∥
p,λ;ν

.

It is clear that

‖f (·+ δ)− f (·)‖p,λ;ν → 0 , δ → 0.
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On the other hand, since 0;π /∈ Sf , it is clear that there is a constant cf > 0
(depending only on f) such that∣∣∣∣ f (x+ δ)

sin (x+ δ)

∣∣∣∣ =

∣∣∣∣ f (x+ δ)

χSf (x+ δ) sin (x+ δ)

∣∣∣∣ ≤ cf ‖f‖∞ .
Taking this relation into account, from the previous inequality we obtain

‖F (·+ δ)− F (·)‖p,λ;µ → 0 , δ → 0.

Consequently, F ∈ Mp,λ
µ (0, π). Since the system {cosnt}n∈N0

is complete in

Mp,λ
µ (0, π), the function F (·) can be approximated by linear combinations of the

system {cosnt}n∈N0
. Then from (13) we obtain that the function f (·) can be ap-

proximated by linear combinations of the system {sin t cosnt}n∈N0
in Mp,λ

ν (0, π).
As a result, we conclude that any function of C∞0 [0, π] can be approximated by
the functions of Lc. Since C∞0 [0, π] is dense in M∞ν , any function from M∞ν can
also be approximated by the functions from Lc. From (13) we get ϑ∗ = 0. The
case ii) is proved, so the proof of theorem is completed. J

Remark 4. For λ = 0, the space Lp,λν (0, π) is reduced to the weighted Lebesgue
space Lp,ν(0, π). In this case, the system {sinnt}n∈N is complete in Lp,ν(0, π) if
and only if the conditions

α0, αr ∈
(
−1

p
− 1,∞

)
and αk ∈

(
−1

p
,∞
)
, for all k = 1, 2, ..., r − 1.

are satisfied. But if we formally put λ = 0 in conditions of Theorem 4 then we
see that the numbers {αk}∞0 are bounded from above by 1− 1

p = 1
q . The authors

were not able to study the completeness of the trigonometric system in Lp,λν in
case the order of degeneracy is greater than 1− 1−λ

p .

Recall that any function f ∈ Lp,λν (0, π) and the weight function ν can be
extended to the interval (−π, π) by taking

fodd(−t) = −f(t) , for t ∈ (0, π) ,

ν̃(t) = v(|t|) , for t ∈ (−π, π) .

So, we can easily prove that∥∥∥fodd∥∥∥
Lp,λν̃ (−π,π)

≤ 2 ‖f‖Lp,λν (0,π)
. (15)

We now come to the following main result.
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Theorem 5. Let ν be given as in (1). The system {sinnt}n∈N forms a basis for

Mp,λ
ν (0, π) if conditions (10) are satisfied.

Proof. Consider the partial sum operator

Pmf(x) =
m∑
n=1

(
2i

∧
fodd(n)

)
sinnx, m ∈ N,

where
∧
fodd(n) =

1

2π

∫ π

−π
fodd(t)e−intdt.

Then, we obtain

Pmf(x) =
−1

2π
e−ixS(e−1f

odd)(−x) +
1

2π
e−i(m+1)xS(e−(m+1)f

odd)(−x)+

+
1

2π
eixS(e−1f

odd)(x)− 1

2π
ei(m+1)xS(e−(m+1)f

odd)(x),

where en(t) = eint, n ∈ N, and S is the singular operator given as in (8). The
boundedness of the operator S and the relation (15) imply the boundedness of
Pmf . That is

‖Pmf‖p,λ;ν ≤ c ‖f‖p,λ;ν ,

where c is a constant independent of m and f . Therefore

sup
m
‖Pmf‖p,λ;ν <∞ , for all f ∈Mp,λ

ν (0, π) .

Using the fact that the system {sinnt}n∈N is complete and minimal under condi-

tions (10) in Mp,λ
ν (0, π) and applying the criteria of basicity, we get the validity

of theorem. J

Since the basis properties of the system of cosines are similar, with minor
modifications, to those of the system of sines, to avoid the repetition of similar
statements we omit the proof of the next theorem.

Theorem 6. Let ν be given as in (1). The system {cosnt}n∈N0
forms a basis

for Mp,λ
ν (0, π) if conditions (10) are satisfied.

For the system of exponents, the situation may be simpler than that with
the systems of sines and cosines, so that we can find necessary and sufficient
conditions for the basicity.
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5. The basicity of the system of exponents

Concerning the basicity of the system of exponents in Mp,λ
ν (−π, π), we have

the following

Theorem 7. Let ν be given as in (2).

(I) The system
{
eint
}
n∈Z is minimal in Lp,λν (−π, π) if

αk ∈
[
λ− 1

p
,
1− λ
q

+ λ

)
, for all k = 0, 1, ..., r ;

(II) The system
{
eint
}
n∈Z is complete in Mp,λ

ν (−π, π) if conditions (11) are
satisfied;

(III) The system
{
eint
}
n∈Z forms a basis for Mp,λ

ν (−π, π) if and only if con-
ditions (10) are satisfied.

Proof. The proofs of (I) and (II) are similar to the proofs of Theorems 1 and
4. Sufficiency of conditions (10) for the basicity of the system of exponents can be
proved as in Theorem 5. So it only remains to prove the necessity of conditions
(10).

Let {en}n∈Z =
{
eint
}
n∈Z form a basis for Mp,λ

ν (−π, π). For any f ∈ Mp,λ
ν

(−π, π) , there exists a unique sequence of scalars ck such that

f =
∞∑

k=−∞
ckek, where cn =

1

2π

∫ π

−π
f(t)e−intdt, n ∈ Z. (16)

This implies that

N2∑
k=N1

ckek → f as N1, N2 →∞ (in Lp,λν (−π, π)). (17)

But, for each couple N1, N2 ∈ N, it is evident that ∃CN1,N2 > 0 :∥∥∥∥∥∥
N2∑

k=N1

ckek

∥∥∥∥∥∥
p,λ,ν

≤ CN1,N2 ‖f‖p,λ,ν , for all f ∈Mp,λ
ν .

It follows from Banach–Steinhaus theorem and expression (16) that∥∥∥∥∥∥
N2∑

k=N1

ckek

∥∥∥∥∥∥
p,λ,ν

≤ C ‖f‖p,λ,ν , for all f ∈Mp,λ
ν . (18)
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Here, C is independent of N1 and N2. Let N1 = 0 and N2 = N . Then (18)
becomes ∥∥∥∥∥

N∑
k=0

ckek

∥∥∥∥∥
p,λ,ν

≤ C ‖f‖p,λ,ν , for all f ∈Mp,λ
ν . (19)

Letting N →∞ in (19), we have∥∥∥∥∥
∞∑
k=0

ckek

∥∥∥∥∥
p,λ,ν

≤ C ‖f‖p,λ,ν , for all f ∈Mp,λ
ν . (20)

Now, let f(eint) = f(t) and, for all |z| < 1, define

F (z) =
1

2πi

∫
|τ |=1

f(τ)

τ − z
dτ.

Then

F (z) =
1

2πi

∫
|τ |=1

f(τ)τ−1

1− zτ−1
dτ =

∞∑
n=0

1

2πi

∫
|τ |=1

f(z)τ−n−1dτzn.

Taking into account (16), we obtain

1

2πi

∫
|τ |=1

f(z)τ−n−1dτ =
1

2π

∫ π

−π

∞∑
k=−∞

cke
ikte−intdt

=
1

2π

∞∑
k=−∞

ck

∫ π

−π
ei(k−n)tdt = cn, (21)

for all n ≥ 0. (Note that we have used the transformation τ = eit and assumed
that f(eit) = f(t)). Consequently

F (z) =
1

2πi

∫ π

−π

f(z)

τ − z
dτ =

∞∑
n=0

cnz
n. (22)

Letting z → eit in (22), and applying the Sokhotski-Plemelj formulas, we obtain

F+(eit) =
1

2
f(eit) +

1

2πi

∫
|τ |=1

f(τ)

τ − eit
dτ. (23)

From
{
eint
}
n∈Z ⊂M

p,λ
ν it follows that ν ∈ Lp,λ and, consequently
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αk ∈
[
−1− λ

p
,∞
)
, ∀k = 0, r. (24)

Assume pλ = p
1−λ , and let 1

pλ
+ 1
qλ

= 1⇒ qλ =
(
−1−λ

p + 1
)−1

. Applying Hölder’s

inequality, it is easy to establish the validity of the following inclusions:

Lpλ,ν ⊂ L
p,λ
ν ⊂ Lp,ν ,

Lq,νp/q ⊂
(
Lp,λν

)∗
⊂ Lqλ,νpλ/qλ .

Similar inclusions are also valid for Mp,λ
ν :

Lpλ,ν ⊂M
p,λ
ν ⊂ Lp,ν ,

Lq,νp/q ⊂
(
Mp,λ
ν

)∗
⊂ Lqλ,νpλ/qλ .

Hence it follows immediately that if the system
{
eint
}
n∈Z is minimal in Mp,λ

ν ,
then it is also minimal in Lpλ,ν . An arbitrary bounded functional on Lpλ,ν is
generated by the following expression

< f ; g >=

∫ π

−π
f (t) g (t)νpλ (t) dt , ∀f ∈ Lpλ,ν ; ∀g ∈ Lqλ,νpλ/qλ . (25)

So, the norm ‖ · ‖pλ,ν in Lpλ,ν is defined by

‖f‖pλ,ν = ‖f ν‖pλ =

(∫ π

−π
|f ν|pλ dt

) 1
pλ
.

From the relation (25) we conclude that the system biorthogonal to
{
eint
}
n∈Z

has the form
{
eintν−pλ (t)

}
n∈Z , and this system belongs to Lqλ,νpλ/qλ , if and only

if the inequalities

αk <
1

qλ
= −1− λ

p
+ 1 , ∀k = 0, r, (26)

are fulfilled. By combining the inequalities (24) and (26) we obtain that the

necessary condition for basicity of the system
{
eint
}
n∈Z in Mp,λ

ν is the following
inequality:

−1− λ
p
≤ αk < −

1− λ
p

+ 1 , ∀k = 0, r. (27)
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From the condition (27) it follows for sufficiently small ε > 0

− 1

pλ − ε
< αk < −

1

pλ − ε
+ 1, ∀k = 0, r, (28)

where pλ > 1. From (28) it follows that the weight function ν (·) belongs to
Muckenhoupt class Apλ−ε. Then, as it is known (see e.g. [14]), F+ ∈ Lpλ−ε,ν ,
and, as a result

1

2π

∫ π

−π
F+(eit)e−intdt =

{
cn, if n ≥ 0,
0, if n < 0 ,

and also, from the basicity of the system {eint}n∈Z for Lpλ−ε,ν , it follows

F+(eit) =
∞∑
n=0

cne
int.

This implies

Sf(eit) =
1

2πi

∫
|τ |=1

f(τ)

τ − eit
dτ =

∞∑
n=0

cne
int − 1

2
f(eit).

Using (20), we obtain

‖Sf‖Mp,λ,ν
≤ 1

2
‖f‖Mp,λ,ν

+

∥∥∥∥∥
∞∑
n=0

cne
int

∥∥∥∥∥
Mp,λ,ν

≤ 1

2
‖f‖Mp,λ,ν

+ C ‖f‖Mp,λ,ν
.

This implies the boundedness of the singular operator S in Mp,λ
ν (−π, π), and so

conditions (10) follow. J

Remark 5. Problems of proving the necessity of condition (10) for the basicity
of the systems of sines and cosines still remain unsolved.

6. Conclusion

We have presented the basis properties of trigonomertic systems in weighted
Morrey spaces. New techniques have been used in the weighted setting of Morrey
space, which can also be applied to the case of weighted Lebesgue space. Note
that our results are reduced to the basis properties of degenerate systems of sines,
cosines and exponents in the Lebesgue space Lp studied by Moiseev [27, 28],
Bilalov and Guliyeva [10], Sadigova and Mamedova [38] and Mamedova [26].
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Indeed, for λ = 0, the space Lp,λν is reduced to the Lebesgue space Lp,ν . The
non-weighted case of Morrey spaces is included. For these reasons, our study is
more general and more comprehensive than the previous works. On the other
hand, the results obtained in this paper can be applied to solve some partial
differential equations by the Fourier method (c.f., [34, 33, 30, 29] in the weighted
Morrey spaces.

Our plan is to extend the results of this work to a more general form of weight
function ν. Moreover, the basis properties of perturbed systems of exponents in
weighted Morrey spaces will be part of our ongoing research. This includes the
study of the Riemann boundary value problem in weighted Morrey-Hardy spaces.
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New York, 2011.

[21] R.A. Hunt, W.S. Young, A weighted norm inequality for Fourier series, Bull.
Amer. Math. Soc., 80(2), 1974, 274-277.



190 B.T. Bilalov, A.A. Huseynli, S.R. El-Shabrawy

[22] D.M. Israfilov, N.P. Tozman, Approximation in Morrey-Smirnov classes,
Azerb. J. Math., 1(1), 2011, 99-113.

[23] K.S. Kazaryan, P.I. Lizorkin, Multipliers, bases and unconditional bases in
the weighted spaces B and SB, Trudy Math. Inst. Steklov., 187, 1989, 111-130;
English transl. in Proc. Steklov Inst. Math., 3(187), 1990.

[24] L.V. Kritskov, Necessary condition for the uniform minimality of
Kostyuchenko type systems, Azerbaijan Journal of Mathematics, 5(1), 2015,
97-103.

[25] A. Kufner, O. John, S. Fuc̆ik, Function Spaces, Academia, Prague, 1977.

[26] Z.V. Mamedova, On basis properties of degenerate exponential systems, Ap-
plied Mathematics, 3, 2012, 1963-1966.

[27] E.I. Moiseev, On basicity of the systems of cosines and sines in weighted
space, Differ. Uravn., 34(1), 1998, 40-44.

[28] E.I. Moiseev, The basicity in weighted space of a system of eigenfunctions of
a differential operator, Differ. Uravn., 35(2), 1999, 200-205.

[29] E.I. Moiseev, On some boundary value problems for mixed type equations,
Differ. Uravn., 28(1), 1992, 123-132.

[30] E.I. Moiseev, On the basis property of a system of sines, Differ. Uravn.,
23(1), 1987, 177-179.

[31] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equa-
tions, Trans. Amer. Math. Soc., 43, 1938, 126–166.

[32] J. Peetre, On the theory of Lp,λ spaces, J. Func. Anal., 4(1), 1969, 71-87.

[33] S.M. Ponomarev, To theory of boundary value problems for mixed type equa-
tions in three-dimensional domains, DAN SSSR, 246(6), 1979, 1303-1304.

[34] S.M. Ponomarev, On an eigenvalue problem, Dokl. Akad. Nauk SSSR, 249
(1979), 1068–1070; English transl., Soviet Math. Dokl, 20, 1979, 1398–1400.

[35] S.S. Pukhov, A.M. Sedletski, Bases of exponentials, sines and cosines in
weighted spaces on a finite interval, Doklady Akademii Nauk. Rossijskaâ
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