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On the Maximal Regularity Property for Evolution
Equations

S.G. Pyatkov

Abstract. This article is a survey of recent results concerning nonautonomous first
order operator-differential equations. We briefly describe the autonomous case as well
and expose the main results related to the maximal regularity property which can be
called fundamentals of the general theory. The main attention is paid to the Cauchy
problem.
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1. Introduction

Let {A(t)}t∈J=[0,T ] (0 < T ≤ ∞) be a family of closed linear operators in a
Banach space X. We consider the Cauchy problem

L(t)u = ut −A(t)u−B(t)u = f, (1)

u(0) = u0, (2)

where the family of operators B(t) : X → X, t ∈ [0, T ] is subordinate in a certain
sense to the family A(t) and f : J → X is a given function. Assume first that
the operators {A(t)} are independent of t and u0 = 0, i.e., we deal with the
autonomous problem

Lu = ut −Au = f(t), u(0) = 0. (3)

By definition, this problem has the property of maximal Lp-regularity, if, for every
f ∈ Lp(J ;X), there exists a unique function u satisfying (3) almost everywhere
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and such that ut, Au ∈ Lp(J ;X). In other words, the maximal Lp-regularity
means that each summand in (3) is well-defined and has the same regularity as
the right-hand side. If the problem (3) has the property of maximal regularity,
then we say that A ∈ Mp(X). Similarly we can define the maximal regularity
property, for instance, in the Hölder space Cα(J ;X). It is not difficult to show
that the Lp-maximal regularity for a closed densely defined operator A implies
that A is a generator of a bounded analytic semigroup in X (see, for example,
Coulhon and Lamberton [22], Dore [26], Hieber and Prüss [41] or Prüss [59, Sect.
10]). The maximal Lp-regularity provides the following important estimate

‖ut‖Lp(J ;X) + ‖u‖Lp(J ;X) + ‖Au‖Lp(J,X) ≤ c‖f‖Lp(J ;X), (4)

which is a consequence of the closed graph theorem. The maximal regularity
is essential when we study nonlinear problems (see [7, 47]), inverse and control
problems [58]. Note that the Cauchy problem has been studied in numerous arti-
cles and monographs (see [49, 52, 57, 28, 56, 74, 35, 11, 32, 48]). The main results
there rely on the classical semigroup theory and some other classical approaches
which are not discussed here. In the present article the main attention is paid to
the maximal regularity property.

The article is structured as follows. The next section contains some defini-
tions. Section 3 is dedicated to some results in the autonomous case. The last
section provides some basic results in the most general nonautonomous case. We
consider only parabolic problems, i.e., the operator A(t) for each t is a generator
of an analytic semigroup.

2. Preliminaries

Let X,Y be Banach spaces. The symbol L(X,Y ) stands for the space of
linear continuous operators defined on X with values in Y . If X = Y then we
use the notation L(X). Let A : X → X be a closed linear operator in X with
a dense domain D(A). The symbol R(A) stands for the range of A. Denote by
σ(A), ρ(A) the spectrum and the resolvent set of A, respectively. Let C− =
{z ∈ C : Re z < 0} (C+ = {z ∈ C : Re z > 0}) and Σθ = {z ∈ C : | arg z| <
θ}. Given a measurable function ϕ(t) positive almost everywhere, define the
space Lp,ϕ(t)(0, T ;X) (X is a Banach space) as the space of strongly measurable

functions, defined on [0, T ] with values in X such that
∫ T

0 ϕp(t)‖u(t)‖pXdt < ∞.
This space for ϕ(t) ≡ 1 is denoted as Lp(0, T ;H). We use also the Sobolev
spaces W s

p (0, T ;X) (see the definition, for instance, in [38, 70]). The space of
bounded continuous functions defined on [0, T ] with values in X is denoted by
C([0, T ];X) and, the corresponding space of m-times continuously differentiable
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functions is denoted by Cm([0, T ];X). The latter space is endowed with the norm
‖u(t)‖Cm([0,T ];X) =

∑m
i=0 ‖u(i)‖C([0,T ]). The Hölder space Cα([0, T ];X) (see the

definitions in [47, Subsect. 0.1, 0.2]) is endowed with the norm ‖u‖Cα([0,T ];X) =

supt,s∈[0,T ],t6=s
‖u(k)(t)−u(k)(s)‖
|t−s|α−k +‖u(t)‖Ck([0,T ];X) (k = [α]). An operator A is called

sectorial if

D(A) = X, R(A) = X, (−∞, 0) ⊂ ρ(A), ‖t(t+A)−1‖L(X) < M ∀t > 0,

where M > 0 is some constant. The class of sectorial operators in X is denoted
by S(X). It makes sense to define the spectral angle of A ∈ S(X) as follows:
ϕA = inf{θ : ρ(−A) ⊃ Σπ−θ, supλ∈Σπ−ϕ ‖λ(A+λ)−1‖L(X) <∞}. Let A ∈ S(X).

Put Hk = D(Ak) (the latter space is endowed with the graph norm). We can
also define the spaces Hk for k < 0 (see [37, Sect. 5], more general definitions
in the case of 0 /∈ ρ(A) can be found in [40]). The space Hk can be defined as
the completion of X with respect to the norm ‖u‖Hk = ‖(A − λI)−ku‖, where
λ ∈ ρ(A). This definition does not agree with that in [37, Sect. 5] but the spaces
obtained are the same. In the reflexive case the space Hk (k < 0) coincides with
the dual to D((L∗)−k) and the norm can be defined by the equality

‖u‖Hk = sup
v∈D((L∗)−k)

| < u, v > |
‖v‖D((L∗)−k)

,

where the brackets < ·, · > denote the duality relation between X and the dual
space X∗. By the real interpolation method (see [69, 40]) we can construct
Bs
q = (Hm, Hk)θ,q, with 1 ≤ q ≤ ∞, k < s < m, and θ = m−s

m+k .

For convenience, we present some properties of these spaces. Assume for
simplicity that 0 ∈ ρ(A).

Lemma 1. The definition of the spaces Bs
q is independent of m, k. The space

Hk for k > s is dense in Bs
q and Hl for l < k. Moreover,

(Bs0
q0 , B

s1
q1 )θ,q = Bs

q , (Bs0
q0 , Hs1)θ,q = Bs

q , (5)

where θ ∈ (0, 1), s = (1− θ)s0 + θs1, and 1
q = 1−θ

q0
+ θ

q1
(1 ≤ qi ≤ ∞, i = 0, 1).

The operator A is isomorphism of Bs
q onto Bs−1

q and is sectorial in Hk and Bs
q

with the domain Hk+1 and Bs+1
q , respectively (see [37, Sect. 5], Sect. 1.14, Sect.

1.15.4 in [69], Prop. 1 in [63]). The norm in the space Bs
q is equivalent to the

norm (see [69, Subsect. 1.14.3])

‖a‖s = ‖tθ(k−m)−r(A(A+t)−1)lAm+ra‖L
q,t−1/p (0,∞;X), s = m+θ(k−m), m < s < k,
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where r, l,m, k are integers, 0 ≤ r < θ(k −m), l > θ(k −m)− r.
Below we will use the operators A being the generators of analytic semigroups.

For definiteness, in this case we assume below that −A is sectorial with ϕA < π/2
(see Sect. 1 in [53]) and 0 ∈ ρ(A).

A Banach space X is called a UMD space (the other names are ζ−convex and

HT -spaces) if the Hilbert transform Pf = lim
ε→0

∫
|t−y|>ε

f(t)
t−y dt extends to bounded

operator on Lp(R,X) for some (or equivalently, for each) p ∈ (1,∞). All sub-
spaces and quotient spaces of Lq(G,µ) for 1 < q < ∞ have the UMD property.
We can say that Sobolev spaces, Hardy spaces and other well known spaces of
analysis are UMD if they are reflexive.

A collection of operators τ ⊂ L(X,Y ) (X,Y are Banach spaces) is called
R-bounded if there exists a constant Cp such that (see [25])( ∑

ε1,ε2,...,εN∈{−1,1}

∥∥∥ N∑
j=1

εjTjxj

∥∥∥p) 1
p ≤ Cp

( ∑
ε1,ε2,...,εN∈{−1,1}

∥∥∥ N∑
j=1

εjxj

∥∥∥p) 1
p
,

for all N , T1, T2, . . . , TN ∈ τ and x1, x2, . . . , xN ∈ X. The least constant Cp in
this inequality is denoted by R(τ) and is called the R-bound of the family τ (see
equivalent definitions in [53, 23, 24, 60]). Note that this definition is independent
of p.

3. Autonomous case

This section is dedicated to the maximal regularity of solutions to the Cauchy
problem.

For detailed information on regularity properties of a solution u to the problem
(3) within the framework of continuous functions we refer to the monographs
[75, 47]. First results on the maximal Lp-regularity property were obtained in
the Hilbert space case by de Simon [66] who proved in 1964 that there is maximal
Lp-regularity provided X is a Hilbert space. De Simon’s proof uses Plancherel’s
theorem which is known to be valid only in the Hilbert space case. Shortly
after this result it was Sobolevskii [67] who showed that the maximal regularity
property is independent of p (see also Coulton and Lamberton [22], Cannarsa
and Vespri [20]). The first most essential results were obtained in the articles by
Grisvard R. [37]-[39] who established the maximal Lp-regularity property in real
interpolation spaces. We state now some of his results and their generalizations.
We assume for simplicity that p ∈ (1,∞). We consider the problem (3), where
the homogeneous initial condition is replaced with the inhomogeneous one, i.e.,
we have the problem

Lu = ut −Au = f(t), (6)
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u(0) = u0, (7)

where A : X → X is a generator of an analytic semigroup.

Theorem 1. ([37, Sect. 6], [63], [65]) Let f ∈ Lp(0, T ;Bs
p) (s ∈ R) and u0 ∈

B
s+1−1/p
p Then there exists a unique solution u(t) ∈ Lp(0, T ;X) to the Cauchy

problem (6), (7) such that ut(t), Au(t) ∈ Lp(0, T ;Bs
p). This solution satisfies the

estimate

‖u‖W 1
q (0,T ;Bsq) + ‖Au‖Lq(0,T ;Bsq) ≤ C(‖f‖Lq(0,T ;Bsq) + ‖u0‖Bs+1−1/q

q
), (8)

Denote by W̃ s
p (0, T ;X) (s ≥ 0) the subspace of the Besov space Bs

p,p(0, T ;X)

comprising the functions u(t) such that ∂kt u(0) = 0 for k < s − 1/p, ∂kt u ∈
Lp,t−1/p(0, T ;X) for s = k + 1/p (see [37]). For s < 0 the space W̃ s

p (0, T ;X)
can be defined as the completion of Lp(0, T ) with respect to the norm ‖(∂t −
λI)−lu‖W̃ s+l

p (0,T ;X) (s+ l > 0). The other definitions use duality arguments. The

following theorem follows from the results obtained in [39, Sect. 6].

Theorem 2. ([39, Sect. 6]) Let f ∈ W̃ s
p (0, T ;X) (s ∈ R) and u0 = 0. Then

there exists a unique solution u(t) ∈ Lp(0, T ;X) of the Cauchy problem (6), (7)
such that ut(t), Au(t) ∈ W̃ s

p (0, T ;X).

Consider an equation with parameter

ut −Au+ γu = f, u|t=0 = 0, γ > 0. (9)

The following theorem is useful when we treat nonlinear problems. It is a
consequence of Theorem 1.

Theorem 3. Let f ∈ Lq(0, T ;Bs
q), q ∈ (1,∞). Then the solution u(t) to the

Cauchy problem (9) satisfies the estimate

‖u‖W 1
q (0,T ;Bsq) + ‖Au‖Lq(0,T ;Bsq) + γ‖u‖Lq(0,T ;Bsq) ≤ C‖f‖Lq(0,T ;Bsq), (10)

where the constant C is independent of γ.

The assertion of this theorem follows from the fact that the above estimate
(8) for a solution involves the estimates for the resolvent of the operator ∂t which
are the same as those for the resolvent of ∂t + γ (see, for instance, the proof of
Theorem 2.7 in [38]).

Next, we should note the article by Da Prato and Grisvard (1975) [55], where
essential results were obtained in the spaces defined by real interpolation method
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even in the nonautonomous case but under rather stringent constraints on the
operators involved.

By means of the sum method, Dore and Venni [26, 27] prove the maximal
Lp-regularity provided X is a UMD Banach space and A admits bounded imag-
inary powers Ais with power angle θA < π/2. Note that this property of the
operator A allows us to describe the domain of fractional powers of A (see [69,
Subsect. 1.15.3]). Prüss and Sohr slightly improved Dore and Venni’s results in
[61]. One more important result was obtained by Lamberton [46] who proved
the maximal Lp-regularity for X = Lq(G), 1 < p, q < ∞, provided A generates
a bounded analytic C0-semigroup which acts on all spaces Lr(G) as a contrac-
tion, 1 < r < ∞. The special case X = Lq(G) was also considered by Hieber
and Prüss [41]. In this article, the maximal Lp-regularity is shown in the case
where the semigroup eAt generated by A admits a suitable heat kernel bound.
The proof relies on Calderon-Zygmund theory, interpolation, and the theorem of
Benedek, Calderon and Panzone. Kalton and Lancien [50] provided a fairly com-
plete description of the spaces X in which the maximal regularity property holds
for every generator of an analytic semigroup. They demonstrated that this prop-
erty, up to an isomorphism, characterizes Hilbert spaces among spaces with an
unconditional basis or (more generally) separable Banach lattices. The complete
answer to the question of maximal Lp-regularity was given recently by Weis [73].
He obtained a characterization of the class Mp(X) in the case of UMD space X
in terms of R-boundedness. It was shown that A ∈Mp(X) if and only if the set
{iρ(iρ+A)−1 : ρ ∈ R} is R-bounded. The proof of this result depends heavily on
a recent theorem on operator-valued Fourier multipliers valid in spaces of UMD
class, also due to him. The notion of R-boundedness goes back to Bourgain [16]
(see also [15, 21]). A further approach to maximal regularity is due to Kalton
and Weis [51]. They extended the scalar H∞-calculus to the case of R-bounded
families of operators and obtained a new maximal regularity result.

We now describe in more details Weis’s results and some their generalizations.
We assume that A is a generator of analytic semigroup and

(A) a family τ = {λ(A− λI)−1 : λ ∈ Σθ0} is R-bounded for some θ0 > π/2.
Denote the R-bound of this family by MA.

Theorem 4. Let X be a UMD space and let the condition (A) hold. Then, for

every f ∈ Lq(0, T ;X) (q ∈ (1,∞)) and u0 ∈ B1−1/q
q , there exits a unique solution

to the problem (6), (7) such that u ∈ Lq(0, T ;D(L)), ut ∈ Lq(0, T ;X) and the
estimate

‖ut‖Lq(0,T ;X) + ‖Au‖Lq(0,T ;X) ≤ C(‖f‖Lq(0,T ;X) + ‖u0‖B1−1/q
q

)

holds. The constant C depends on the constant MA, X, and q and is bounded for
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bounded constants MA.

Proof. We can refer, for instance to [60, Theorem 3.2], [23, Theorem 4.4,
Theorem 3.19]. J

In the following theorems we replace the problem (6), (7) with the problem

ut −Au+ γu = f, γ > 0 (11)

u|t=0 = 0, (12)

where γ > 0 is a parameter and A : X → X is a generator of an analytic
semigroup.

Theorem 5. Let X be a UMD space and let the condition (A) hold. Then, for
every f ∈ Lq(0, T ;X) (q ∈ (1,∞)), there exits a unique solution to the problem
(11), (12) such that u ∈ Lq(0, T ;D(A)), ut ∈ Lq(0, T ;X) and the estimate

‖ut‖Lq(0,T ;X) + ‖Au‖Lq(0,T ;X) + γ‖u‖Lq(0,T ;X) ≤ C‖f‖Lq(0,T ;X) (13)

holds, where the constant C is independent of γ. It depends on the constant MA,
q, and the space X.

Proof. We consider the operator L − γI instead of L and use the estimate
in Theorem 4. In order to prove the assertion, we should estimate the quantity
R{λ(L− λ− γ)−1, λ ∈ Σθ0} by a constant independent of γ and use Theorem 4.
First, we can say that R{iξ(L− iξ−γ)−1, ξ ∈ R} ≤ R{(iξ+γ)(L− iξ−γ)−1, ξ ∈
R} ≤ 2ML in view of Kahane’s contraction principle (see Remark 2.3 in [25]
and Lemma 3.5 in [23]) and the definition of R-boundedness. Next, we refer
to the inequality R{λ(L − λ − γ)−1, Reλ ≥ 0} ≤ R{iξ(L − iξ − γ)−1, ξ ∈
R} ≤ 2ML whose proof is presented in Theorem 4.4 in [23]. The estimate for
R{λ(L − λ − γ)−1, λ ∈ Σθ0} for some θ0 > π/2 easily follows (see the proof of
Theorem 4.4 in [23]). J

The above theorems have numerous applications. Moreover, there are a lot
of close results. We present here some of them.

Theorem 6. [60, Theorem 3.2] Let X be a UMD space, and let condition (A) be
satisfied. Then for arbitrary functions f ∈ Lq,t1−µ(0, T ;X) (T ≤ ∞, q ∈ (1,∞))

and u0 ∈ B
µ−1/q
q (µ ∈ (1/q, 1], there exists a unique solution to the Cauchy

problem (6), (7) such that u ∈ Lq,t1−µ(0, T ;D(L)) and ut ∈ Lq,t1−µ(0, T ;X).

Theorem 7. [63, Theorem 5] Let X be a UMD space and let the condition
(A) hold. If f ∈ Lq(0, T ;Bs

q) ∩ Lq,t−s(0, T ;X) (s ≤ 0, s 6= 1/q − 1) (q ∈
(1,∞)) and u0 ∈ B

s+1−1/q
q (1 < q < ∞), then there exists a unique solution

u ∈ W 1
q (0, T ;Bs

q) ∩ Lq(0, T ;Bs+1
q ) to the problem (6), (7) such that ut, Au ∈

Lq,t−s(0, T ;X).
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Some theorems similar to Theorem 7 can be found in [65].
Recent results and the bibliography dedicated to nonlocal problems can be

found in [5, 6, 13, 18, 19, 33]. We present here the results by Uvarova [71, 72].
Consider the nonlocal conditions

u(0) = Ru+ u0 (14)∫ T

0
u(τ) dσ(τ) = u0, (15)

where σ is a function of bounded variation.
LetH = {u ∈ Lq,tδ(0, T ;D(A)) : ut ∈ Lq,tδ1 (0, T ;X), utδ2 ∈ C([0, T ];B

1−1/q
q )}.

Theorem 8. [71, Theorem 8] Assume that R ∈ L(H,B
1−1/q
q ) with δ, δ2 > 0,

q ∈ (1,∞), and δ1 > 1 − 1/q, X is a UMD space, and the condition (A)
holds. Then there exists a number γ0 such that for every f ∈ Lq(0, T ;X),

u0 ∈ Lq(0, T ;B
1−1/q
q ), and γ ≥ γ0 the problem (11), (14) has a unique solution

u ∈ Lq(0, T ;D(A)) ∩W 1
q (0, T ;X).

Introduce the function ϕ(λ) =
∫ T

0 eλτ dσ(τ) and assume that

∃δ0 > 0 , β ≤ 0 : |ϕ(λ)| ≥ δ0(1 + |λ|)β ∀λ ∈ C \ Σθ1 , (16)

where π/2 < θ1 < θ0 and θ0 is a parameter in (A).

Theorem 9. [72, Theorem 5] Let X be a UMD space and let the condition

(A) hold. Assume also that f ∈ Lq,t1−µ(0, T ;X), u0 ∈ B
µ−1/q
q (1 < q < ∞,

µ ∈ (1/q, 1]), and the condition (16) holds. If β < 0, then there exists a unique

solution u ∈ Lq,t1−µ(0, T ;Bβ+1
q ) with ut ∈ Lq,t1−µ(0, T ;Bβ

q ) to the problem (6),
(15). If β = 0, then there exists a unique solution u ∈ Lq,t1−µ(0, T ;D(A)) with
ut ∈ Lq,t1−µ(0, T ;X) to the problem (6), (15).

Remark 1. The condition (16) in [72] is written in a different form. But it is
easy to see that this correction does not influence on the proof and the assertion
of Theorem 5 in [72] remains valid.

4. Nonautonomous case

As we have already noted, the first essential results concerning nonautonomous
case were obtained by G. Da Prato and P. Grisvard in [55]. They prove the max-
imal Lp-regularity property in the spaces constructed by the real interpolation
method under rather stringent conditions on the resolvent of A(t). In particular,
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its differentiability with respect to t is required. Weaker conditions were later
used in the articles by Acquistapace P. and Terreni B. [2, 3, 1, 4]) in which the
maximal regularity property is proven in the spaces of continuous or Hölder con-
tinuous functions. Note that the monograph [47] also contains some results of
this type.

The main assumptions on the operator family A(t) in these articles (see, for
instance, [2, 3]) are the so-called Acquistapace-Terreni conditions related to the
behavior of the resolvent and the Hölder continuity of the family {A(t)}. In
particular, a survey of these and some other results is presented in [1]. Further
developments of this method can be found in [42, 43, 34]. Some results are also
presented in [68, Sect. 6.8]. Let us state the Asquispace-Terreni condition and
some of their results (see [2]. Note that it is not assumed in [2] that D(A(t)) is
dense in X.

The condition (I). The operator A(t) is a generator of an analytic semigroup
for every t ∈ [0, T ] (T <∞), Σθ0 ⊂ ρ(A(t)) for some θ0 > π/2 and the resolvent
RA(t)(λ) = (A(t) − λ)−1 of A satisfies the estimate ‖Rλ(A(t))‖L(X) < M/(1 +

|λ|) ∀λ ∈ Σθ0 , ∀t ∈ [0, T ].
The condition (II). There exist B > 0, αi, βi, k > 0 such that 0 ≤ βi < αi ≤ 2

and
‖A(t)RA(t)(λ)(A−1(t)−A−1(s))‖L(X) ≤

≤ B
k∑
i=1

(t− s)αi |λ|βi−1, ∀λ ∈ Σθ0 \ {0}, ∀0 ≤ s ≤ t,

where δ = mini(αi − βi) ∈ (0, 1).
The condition (II) called the Asquispace-Terreni condition is often met in

literature. It allows to state a lot of existence results for the problem (1), (2).
Below we state one of the results of this type (see [2, Theorem 6.1]). Denote by
Z(0, β) the space of functions u(t) ∈ C([0, T ];X) such that u ∈ Cβ([a, T ];X) for
every a ∈ (0, T ).

Theorem 10. Let X be a Banach space and let the conditions (I), (II) hold.
Assume also that B(t) = 0 in (1), f ∈ Z(0, β) (β ∈ (0, δ)), A(0)u0 + f(0) ∈
D(A(0)). Then there exists a unique solution u ∈ C([0, T ];X) to the problem
(1), (2) such that ut, A(t)u(t) ∈ Z(0, β) and supt∈[a,T ] ‖u(t)‖

Bβ∞
< ∞ for every

a ∈ (0, T ).

Next, we present the corresponding results in the spaces Lp [34, Theorem 2.2].
Condition (III). X is a UMD space for some θ0 > π/2 and every t ∈ [0, T ]

(T < ∞), Σθ0 ⊂ ρ(A(t)) and the family τ = {λ(−A(t) + λI)−1 : λ ∈ Σθ0}
(θ0 > π/2) is R-bounded and R(τ) ≤ M , where the constant M is independent
of t ∈ [0, T ].
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Theorem 11. Let X be a Banach space and let the conditions (III), (II) hold. As-
sume also that B(t) = 0 in (1), f ∈ Lq(0, T ;X) (T <∞), u0 ∈ (D(A(0)), X)1/q,q.
Then there exists a unique solution u ∈ C([0, T ];X) to the problem (1), (2) such
that ut, A(t)u(t) ∈ Lq(0, T ;X).

Another series of results dedicated to the nonautonomous equations deals with
the assumption that the domain D(A(t)) is independent of t. In this case the
different maximal regularity results were obtained. The maximal Lp-regularity
is studied, for instance, in [8, 9, 44, 62, 17, 10]. It is typical to require that the
operator family A(t) is continuous (belongs to the class C([0, T ];L(D,X)) with
D = D(A(t))) and the operator familyB(t) is subordinate in a certain sense to the
family A(t). We now state one of these theorems assuming this condition fulfilled.
The next result is actually a consequence of those in [8, Theorem 7.1]. Introduce
the space H1,1

q (0, T ) of functions u ∈ Lq(0, T ;D) such that ut ∈ Lq(0, T ;X).
Endow this space with the norm

‖u‖q
H1,1
q (0,T )

=

∫ T

0
‖ut(t)‖qX + ‖u(t)‖qD dt.

The space Hq(a, T ) (a ∈ [0, T )) consists of functions u ∈ H1,1
q (a, T ) such that

u(t) = 0 for t < a in the case of a > 0 and u(0) = 0 for a = 0. The norm
in this space coincide with that in H1,1

q (0, T ). Define also the space Hq(a, b)
(0 ≤ a < b < T ) as the restriction of functions in u ∈ Hq(a, T ) to the segment
[0, b]. We endow the space Hq(a, b) with the norm inf ‖ũ‖Hq(0,T ), where the

infimum is taken over all extensions ũ of u ∈ H1,1
q (a, b) to the whole segment

[0, T ].
Condition (IV). B(t) ∈ L1(0, T ;L(D,X)) and there exists a continuous func-

tion β(ξ) : [0,+∞) → R+ such that β(0) = 0 and ‖B(t)u(t)‖Lq(a,b;X) ≤ β(b −
a)‖u(t)‖Hq(a,b) for all u ∈ Hq(a, b) and 0 ≤ a < b ≤ T .

Theorem 12. Let X be a Banach space and let the conditions (III), (IV) hold.

Assume also that f ∈ Lq(0, T ;X) (1 < q < ∞), u0 ∈ B1−1/q
q . Then there exists

a unique solution u ∈ Lq(0, T ;X) to the problem (1), (2) such that ut, A(t)u(t) ∈
Lq(0, T ;X).

Concerning maximal regularity and existence theorems for the Cauchy prob-
lem, we of course should refer to the book [7, Ch.4], where the reader can find
relevant results as well as the bibliography.

Next series of results is presented in the book [75, Ch. 3], where the maximal
regularity property is studied with the use of Hölder continuity of the family
{A(t)}. The main spaces are weighted Hölder spaces. Let us state the conditions
on the family A(t).
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Condition (V). There exist constants µ, ν ∈ (0, 1]), N > 0 such that µ+ν > 1,

‖Aν(t)(A−1(t)−A−1(s))‖L(X) ≤ N |t− s|µ, D(A(s)) ⊂ D(Aν(t)), ∀s, t ∈ [0, T ].

Define the space F β,σ((0, T ];X) (0 < β < σ ≤ 1) as the space of functions f(t)
continuous on (0, T ] such that

∃ lim
t→a

t1−µf(t), sup
a≤s<t≤T

(s− a)1−β+σ‖f(t)− f(s)‖
|t− s|σ

<∞,

lim
t→a

sup
s∈(a,t)

(s− a)1−β+σ‖f(t)− f(s)‖
|t− s|σ

= 0,

Theorem 13. Let X be a Banach space and let the conditions (I), (V) hold. As-
sume also that B(t) = 0 in (1), f ∈ F β,σ((0, T ];X) (0 < σ < min(β, µ+ν−1), β ∈
(0, δ)), u0 ∈ D(Aβ(0)) (0 < β ≤ 1). Then there exists a unique solution
u ∈ C([0, T ];X) to the problem (1), (2) such that Aβ(t)u(t) ∈ C([0, T ];X),
ut, A(t)u(t) ∈ F β,σ((0, T ];X) and supt∈[a,T ] ‖u(t)‖

Bβ∞
<∞ for every a ∈ (0, T ).

Note that the case of B(t) 6≡ 0 is also considered in [75].
The Hilbert space results dedicated to the problem (1), (2) are often based

on the Lax-Milgram theorem and the study of corresponding sesquilinear forms
(see [45, 12, 54, 31]).

Next, we present author’s recent results (see [64]). The approach of [64] is
similar to that described in [7, Ch.4, Sect. 3] where the problem (1), (2) is
reduced to an abstract initial-boundary value problem. This approach (see, for
instance, [36]) is often used in the study of abstract boundary control problems
(see [29, 30] and the references therein). Some recent results on control problems
are described in the survey [14].

First, we assume that there exists a Banach spaces D ⊂ X and Y and a family
of linear operators Q(t) : D → Y such that

Condition (VI). A(t) ∈ C([0, T ];L(D,X)), Q(t) ∈ C([0, T ];L(D,Y )), the
operators At = A(t)|kerQ(t)) : X → X are the generators of analytic semigroups
for every t ∈ [0, T ];

Put Bs
q = (D,X)1−s,q, H

s,r
q (α, β) = W s

q (α, β;X) ∩ Lq(α, β;Br
q ).

Given a function g(t), define the function gε(t) =

{
g(t− ε), t ∈ [ε, T ],

0, t ∈ [0, ε).
where ε ∈ (0, T ). Next, we impose some additional conditions on the mapping
Q. We assume that there exists a Banach space Z ⊂ Lq(0, T ;Y ) such that

Condition (VII). The mappings Q : u(t) → Q(t)u(t), Qτ : u(t) → Q(τ)u(t)
(τ ∈ [0, T ]) belong to the class L(H1,1

q (0, T ), Z), the norms ‖Qτ‖L(H1,1
q (0,T ),Z)

are

uniformly bounded and the mapping Qτ is surjective for every τ ∈ [0, T ];
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Condition (VIII). For every ε > 0, there exists δ > 0 such that

‖(Qτ1 −Qτ2)u‖Z ≤ ε‖u‖H1,1
q (0,T )

for all u ∈ Hq(0, T ) and τ1, τ2 ∈ [0, T ] such that |τ2 − τ1| < δ;

‖(Q−Qτ )u‖Z ≤ ε‖u‖H1,1
q (0,T )

for all u ∈ Hq(τ, T ) and τ, b such that suppu ⊂ [τ, b], 0 ≤ τ < b ≤ T , b− τ < δ;

((Q−Q0)v)ε0 ∈ Z, ‖((Q−Q0)u)ε0‖Z ≤ ε‖u(t)‖
H1,1
q (0,T )

for all v ∈ H1,1
q (0, T ), some ε0 ∈ (0, T ), and every u ∈ Hq(0, T ) such that

suppu ⊂ [0, b] with b < δ.

Next, we specify some additional function spaces and describe their properties.
Let g(t) ∈ Z. Fix ε ∈ (0, T ) and define the space Zq(0, T ) as the subspace of
functions g ∈ Z such that there exists ε > 0 such that gε ∈ Z. It is possible to
show that if gε ∈ Z for some ε > 0, then gε ∈ Z for all ε > 0. So it is natural to
fix ε0 > 0 and introduce the norm ‖g(t)‖Zq(0,T ) = ‖g(t)‖Z + ‖gε0(t)‖Z .

First, we consider an initial-boundary value problem. In addition to the initial
condition (2) we consider the boundary condition

Q(t)u(t) = g(t). (17)

Clearly, the problem (1), (2), (17) has no solutions for arbitrary g, u0. So we have
the natural consistency condition

g(t)−Qv(t) ∈ Zq(0, T ), g(t) ∈ Z, (18)

where v(t) ∈ H1,1
q (0, T ) is an arbitrary function such that v(0) = u0. We assume

that

u0 ∈ B1−1/q
q = (D,X)1/q,q. (19)

In this case there exists a function v ∈ H1,1
q (0, T ) such that v(0) = u0 (Theorem

1.8.3 in [69]). Note that the condition (18) does not depend on this function v.
Moreover, note that the condition (18) is equivalent to the condition

g(t)−Q0v(t) ∈ Zq(0, T ), g(t) ∈ Z. (20)

Theorem 14. Assume that f ∈ Lq(0, T ;X) and the conditions (18), (19), (IV),
(VI)-(VIII) together with the condition (III), where the operator A(t) is replaced
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with At, hold. Then there exists a unique solution u ∈ H1,1
q (0, T ) to the problem

(1), (2), (17). This solution satisfies the estimate

‖u‖
H1,1
q (0,T )

≤ c(‖g−Qv‖Zq(0,T ) +‖u0‖B1−1/q
q

+‖v‖
H1,1
q (0,T )

+‖f‖Lq(0,T ;X)), (21)

where the constant c is independent of g, u0, and f , and v ∈ H1,1
q (0, T ) is an

arbitrary function such that v(0) = u0.

As a consequence of Theorem 14 we have the following theorem.

Theorem 15. Assume that f ∈ Lq(0, T ;X), u0 ∈ B1−1/q
0q = (D(A0), X)1/q,q, and

the conditions (IV), (VI)-(VIII), and (III) (where the operator A(t) is replaced
with At) hold. Then there exists a unique solution u ∈ H1,1

q (0, T ) to the problem
(1)-(2) such that u(t) ∈ D(A(t)) for a.a. t ∈ [0, T ]. This solution satisfies the
estimate

‖u(t)‖
H1,1
q (0,T )

≤ c(‖u0‖B1−1/q
0q

+ ‖f‖Lq(0,T ;X)), (22)

where the constant c is independent of g, u0.

Remark 2. The results of Theorem 14 allows us to consider the classical parabolic
problems of the form

ut −A(t, x,D)u = f(t, x), x ∈ G ⊂ Rn, t ∈ (0, T ), (23)

Bj(t, x,D)u = gj(t, x) (j = 1, ...,m), x ∈ Γ = ∂G, t ∈ (0, T ), (24)

u(0, x) = u0(x), x ∈ G. (25)

Here G is a bounded domain in Rn with boundary Γ ∈ C2m, A(t, x,D) =∑
|α|≤2m aα(x, t)Dαu, Bj(t, x,D) =

∑
|α|≤mj bjα(x, t)Dαu(x, t), where aα and

bjα are L(X)-valued variable coefficients, mj < 2m, and X is a UMD space. The
results of this type and the bibliography can be found in [24] (see also [23]).
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for boundary control problems, Appl. Math. Optim., 62, 2010, 205-227.
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