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Solvability Conditions in Weighted Sobolev Type
Spaces for one Class of Inverse Parabolic
Operator-Differential Equations

A.R. Aliev∗, M.A. Soylemezo

Abstract. In this paper, we obtain sufficient conditions for the well-posed and unique
solvability in a weighted Sobolev space for a class of inverse parabolic operator-differential
equations of third order. The main part of the equation under consideration has a
multiple characteristic. We establish a connection between the solvability conditions and
the values of the norms of intermediate derivatives operators. These norms are estimated
with respect to the norm of the operator generated by the main part of considered
equation. The obtained results show the role of the lower boundary of the spectrum of
an abstract operator appearing in the main part of the equation.
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1. Problem statement

Let H be a separable Hilbert space with scalar product (x, y), x, y ∈ H and
A be a self-adjoint positive-definite operator in H (A = A∗ ≥ cE, c > 0, E is a
unit operator).

We denote by L2 (R;H) (R = (−∞,+∞)) the space of measurable (see [1])
functions with values from H, endowed with the norm

‖g‖L2(R;H) =

(∫ +∞

−∞
‖g(t)‖2 dt

) 1
2

,
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and by W 3
2 (R;H) the space of functions with values from H such that d3v(t)

dt3
,

A3v(t) ∈ L2 (R;H), endowed with the norm

‖v‖W 3
2 (R;H) =

(∥∥∥∥d3vdt3
∥∥∥∥2
L2(R;H)

+
∥∥A3v

∥∥2
L2(R;H)

) 1
2

.

See [2, Ch.1] for more details about space W 3
2 (R;H).

Note that all derivatives are hereinafter understood in the sense of the theory
of distributions; the operator Aγ is determined from the spectral decomposition
of the operator A, i.e. Aγ =

∫ +∞
c σγdEσ, γ ≥ 0, where Eσ is the decomposition

of unit of the operator A.
Let −∞ < κ < +∞. For the functions u(t), defined in R, with values from

H, we introduce the following spaces with the weight e−
κ
2
t:

L2,κ (R;H) =

{
u (t) : ‖u‖L2,κ(R;H) =

(∫ +∞

−∞
‖u (t)‖2H e

−κtdt

) 1
2

< +∞

}
,

W 3
2,κ (R;H) =

{
u (t) : ‖u‖W 3

2,κ(R;H) =(∫ +∞

−∞

(∥∥∥∥d3u (t)

dt3

∥∥∥∥2
H

+
∥∥A3u (t)

∥∥2
H

)
e−κtdt

) 1
2

< +∞

 .

It is evident that for κ = 0 we will have the spaces L2,0(R;H) = L2(R;H) and
W 3

2,0(R;H) = W 3
2 (R;H).

Hereinafter, by L(X,Y ) we mean the set of linear bounded operators from
the Hilbert space X to another Hilbert space Y . If Y = X, then we write L (X)
instead of L(X,Y ). By σ(A) we mean the spectrum of the operator A.

Consider the operator-differential equation(
− d

dt
+A

)3

u (t) +A1
d2u(t)

dt2
+A2

du(t)

dt
+A3u(t) = f (t) , t ∈ R, (1)

where A = A∗ ≥ cE, c > 0, A1, A2, A3 are linear, and generally speaking,
unbounded operators, f (t) ∈ L2,κ (R;H), u (t) ∈W 3

2,κ (R;H).
The equation (1) for A1 = A2 = A3 = 0 has a multiple characteristic and,

according to the classification carried out in [3], it belongs to the class of inverse
parabolic operator-differential equations. The class of inverse parabolic equations
is dual to the class of parabolic equations. Such equations often appear in various
fields of natural science; for example, they characterize the problems of diffusion
or heat conduction in a viscoelastic medium.
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Definition 1. If for f(t) ∈ L2,κ(R;H) there exists a vector-function u(t) ∈
W 3

2,κ(R;H) that satisfies equation (1) almost everywhere, then we will call it a
regular solution of equation (1).

Definition 2. If for any f(t) ∈ L2,κ(R;H) there exists a regular solution of
equation (1) and the inequality

‖u‖W 3
2,κ(R;H) ≤ const ‖f‖L2,κ(R;H)

holds, then equation (1) is said to be regularly solvable.

In this paper, we find conditions for regular solvability of the equation (1).
In the mathematical literature, there is a large amount of research dedi-

cated to operator-differential equations. The works by E.Hille, K.Iosida, T.Kato,
S.Agmon, L.Nirinberg, and Z.I.Khalilov laid the foundation for the theory of these
equations in the mid-20th Century. Later, a whole series of fundamental results
were obtained both in the direction of solvability issues for operator-differential
equations and in the field of spectral problems of polynomial operator pencils re-
lated to these equations. Among these works, we should mention, for example, the
papers by M.G.Gasymov, A.G.Kostyuchenko, G.V.Radzievsky, A.A.Shkalikov,
S.S.Mirzoev, A.R.Aliev (see, for example, [4]-[15] and references therein). But
in the majority of these papers, the considered operator-differential equations do
not have a multiple characteristic. As noted above, the main part of equation
(1) has a multiple characteristic. Over the past 10 years, the works [16]-[24]
have appeared, in which the issues of regular and normal solvability of operator-
differential equations with a multiple characteristic have been investigated. It
should be stressed here that the equations studied in those papers belong to the
class of quasi-elliptic operator-differential equations. The main part of equation
(1) is the inverse parabolic equation. Despite the fact that the issues of regular
solvability of parabolic operator-differential equations with a multiple character-
istic are relatively little studied, a series of works [25]-[27] have appeared recently
in this field, which, in conjunction with this paper, can further serve as an im-
petus for a thorough study of operator-differential equations of parabolic and
inverse parabolic types with a multiple characteristic.

2. Isomorphism theorems

We first investigate equation (1) for A1 = A2 = A3 = 0.
Denote by P0 an operator from the space W 3

2,κ (R;H) to the space L2,κ (R;H)
defined as follows:

P0u (t) ≡
(
− d

dt
+A

)3

u (t) , u (t) ∈W 3
2 (R;H) .
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We have the following lemma.

Lemma 1. Let A = A∗ ≥ cE, c > 0. Then the operator P0 is bounded from the
space W 3

2,κ(R;H) to the space L2,κ(R;H).

Proof. Indeed, taking into account the Cauchy-Schwartz inequality and the
Young inequality, for u (t) ∈W 3

2,κ (R;H), we have:

−Re
(
d3u

dt3
, A

d2u

dt2

)
L2,κ(R;H)

≤
∥∥∥∥d3udt3

∥∥∥∥
L2,κ(R;H)

∥∥∥∥Ad2udt2
∥∥∥∥
L2,κ(R;H)

≤

≤ 1

2

∥∥∥∥d3udt3
∥∥∥∥2
L2,κ(R;H)

+
1

2

∥∥∥∥Ad2udt2
∥∥∥∥2
L2,κ(R;H)

, (2)

Re

(
d3u

dt3
, A2du

dt

)
L2,κ(R;H)

≤
∥∥∥∥d3udt3

∥∥∥∥
L2,κ(R;H)

∥∥∥∥A2du

dt

∥∥∥∥
L2,κ(R;H)

≤

≤ 1

2

∥∥∥∥d3udt3
∥∥∥∥2
L2,κ(R;H)

+
1

2

∥∥∥∥A2du

dt

∥∥∥∥2
L2,κ(R;H)

, (3)

−Re
(
d3u

dt3
, A3u

)
L2,κ(R;H)

≤
∥∥∥∥d3udt3

∥∥∥∥
L2,κ(R;H)

∥∥A3u
∥∥
L2,κ(R;H)

≤

≤ 1

2

∥∥∥∥d3udt3
∥∥∥∥2
L2,κ(R;H)

+
1

2

∥∥A3u
∥∥2
L2,κ(R;H)

, (4)

−Re
(
A
d2u

dt2
, A2du

dt

)
L2,κ(R;H)

≤
∥∥∥∥Ad2udt2

∥∥∥∥
L2,κ(R;H)

∥∥∥∥A2du

dt

∥∥∥∥
L2,κ(R;H)

≤

≤ 1

2

∥∥∥∥Ad2udt2
∥∥∥∥2
L2,κ(R;H)

+
1

2

∥∥∥∥A2du

dt

∥∥∥∥2
L2,κ(R;H)

, (5)

Re

(
A
d2u

dt2
, A3u

)
L2,κ(R;H)

≤
∥∥∥∥Ad2udt2

∥∥∥∥
L2,κ(R;H)

∥∥A3u
∥∥
L2,κ(R;H)

≤

≤ 1

2

∥∥∥∥Ad2udt2
∥∥∥∥2
L2,κ(R;H)

+
1

2

∥∥A3u
∥∥2
L2,κ(R;H)

, (6)

−Re
(
A2du

dt
, A3u

)
L2,κ(R;H)

≤
∥∥∥∥A2du

dt

∥∥∥∥
L2,κ(R;H)

∥∥A3u
∥∥
L2,κ(R;H)

≤

≤ 1

2

∥∥∥∥A2du

dt

∥∥∥∥2
L2,κ(R;H)

+
1

2

∥∥A3u
∥∥2
L2,κ(R;H)

. (7)
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Then, taking into account inequalities (2)-(7) and the intermediate derivatives
theorem [2, Ch.1], we obtain:

‖P0u‖2L2,κ(R;H) =

∥∥∥∥d3udt3
∥∥∥∥2
L2,κ(R;H)

+ 9

∥∥∥∥Ad2udt2
∥∥∥∥2
L2,κ(R;H)

+ 9

∥∥∥∥A2du

dt

∥∥∥∥2
L2,κ(R;H)

+

+
∥∥A3u

∥∥2
L2,κ(R;H)

− 6Re

(
d3u

dt3
, A

d2u

dt2

)
L2,κ(R;H)

+

+6Re

(
d3u

dt3
, A2du

dt

)
L2,κ(R;H)

− 2Re

(
d3u

dt3
, A3u

)
L2,κ(R;H)

−

−18Re

(
A
d2u

dt2
, A2du

dt

)
L2,κ(R;H)

+ 6Re

(
A
d2u

dt2
, A3u

)
L2,κ(R;H)

−

−6Re

(
A2du

dt
, A3u

)
L2,κ(R;H)

≤ 8

∥∥∥∥d3udt3
∥∥∥∥2
L2,κ(R;H)

+ 24

∥∥∥∥Ad2udt2
∥∥∥∥2
L2,κ(R;H)

+

+24

∥∥∥∥A2du

dt

∥∥∥∥2
L2,κ(R;H)

+ 8
∥∥A3u

∥∥2
L2,κ(R;H)

= 8
(
‖u‖2W 3

2,κ(R;H) +

+3

∥∥∥∥Ad2udt2
∥∥∥∥2
L2,κ(R;H)

+ 3

∥∥∥∥A2du

dt

∥∥∥∥2
L2,κ(R;H)

)
≤ const ‖u‖2W 3

2,κ(R;H) ,

i.e.

‖P0u‖L2,κ(R;H) ≤ const ‖u‖W 3
2,κ(R;H) . J

We now turn to the issue about isomorphism of the operator P0.

We have the following theorem.

Theorem 1. Let A be a self-adjoint positive-definite operator with the lower
bound of the spectrum λ0 (A = A∗ ≥ λ0E, λ0 > 0) and κ < 2λ0. Then the
operator P0 is an isomorphism between the spaces W 3

2,κ(R;H) and L2,κ(R;H).

Proof. In the equation

P0u (t) = f (t) , (8)

u(t) ∈ W 3
2,κ(R;H), f(t) ∈ L2,κ(R;H), we make a substitution u(t) = v(t)e

κ
2
t.

Then, v(t) = u(t)e−
κ
2
t ∈W 3

2 (R;H). As(
− d

dt
+A

)3

u(t) = e
κ
2
t

(
− d

dt
− κ

2
+A

)3

v(t) = f(t),
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we obtain (
− d

dt
− κ

2
+A

)3

v(t) = f(t)e−
κ
2
t. (9)

By virtue of the fact that g(t) = f(t)e−
κ
2
t ∈ L2(R;H), equation (9) can be

written as (
− d

dt
− κ

2
+A

)3

v(t) = g(t) (10)

in the space L2(R;H), where v(t) ∈W 3
2 (R;H), g(t) ∈ L2(R;H).

Denote

P0,κv(t) =

(
− d

dt
− κ

2
+A

)3

v(t), v(t) ∈W 3
2 (R;H).

Then equation (10) can be written as P0,κv(t) = g(t), where v(t) ∈ W 3
2 (R;H),

g(t) ∈ L2(R;H). To solve the last equation we use the Fourier transform:(
−
(
iξ +

κ

2

)
E +A

)3
v̂(ξ) = ĝ(ξ), (11)

where v̂(ξ), ĝ(ξ) are Fourier transforms of the vector-functions v(t), g(t), respec-
tively. Let us prove that for κ < 2λ0, the operator sheaf

P0,κ(iξ;A) =
(
−
(
iξ +

κ

2

)
E +A

)3
(12)

is invertible. Let λ ∈ σ(A) (λ ≥ λ0). Then the characteristic polynomial (12)
has the form

P0,κ(iξ;λ) =
(
−iξ − κ

2
+ λ
)3
.

From here we have

|P0,κ(iξ;λ)| =
∣∣∣∣(−iξ − κ

2
+ λ
)3∣∣∣∣ =

((
λ− κ

2

)2
+ ξ2

) 3
2

≥

≥
(
λ− κ

2

)3
≥
(
λ0 −

κ

2

)3
> 0, ξ ∈ R,

i.e. from the spectral decomposition of the operator A it follows that the operator
sheaf P0,κ(iξ;A) is reversible for κ < 2λ0. Then from (11) we can find v̂(ξ):

v̂(ξ) =
(
−
(
iξ +

κ

2

)
E +A

)−3
ĝ(ξ).
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Therefore,

v(t) =
1√
2π

∫ +∞

−∞

(
−
(
iξ +

κ

2

)
E +A

)−3
ĝ(ξ)eiξtdξ.

It is clear that v(t) satisfies equation (10) almost everywhere.
Now we’ll try to prove that v(t) ∈ W 3

2 (R;H). According to the well-known
Plancherel theorem, it suffices to prove that A3v̂(ξ) ∈ L2(R;H) and −iξ3v̂(ξ) ∈
L2(R;H). It is evident that

‖v‖2W 3
2 (R;H) =

∥∥∥∥d3vdt3
∥∥∥∥2
L2(R;H)

+
∥∥A3v

∥∥2
L2(R;H)

=

=
∥∥−iξ3v̂(ξ)

∥∥2
L2(R;H)

+
∥∥A3v̂(ξ)

∥∥2
L2(R;H)

.

As ∥∥A3v̂(ξ)
∥∥
L2(R;H)

=

∥∥∥∥A3
(
−
(
iξ +

κ

2

)
E +A

)−3
ĝ(ξ)

∥∥∥∥
L2(R;H)

≤

≤ sup
ξ∈R

∥∥∥∥A3
(
−
(
iξ +

κ

2

)
E +A

)−3∥∥∥∥
H→H

‖ĝ(ξ)‖L2(R;H) ,

we estimate the norm
∥∥∥A3

(
−
(
iξ + κ

2

)
E +A

)−3∥∥∥
H→H

for ξ ∈ R. It follows from

the spectral theory of self-adjoint operators that∥∥∥∥A3
(
−
(
iξ +

κ

2

)
E +A

)−3∥∥∥∥
H→H

= sup
λ∈σ(A)

∣∣∣∣λ3 (−iξ − κ

2
+ λ

)−3∣∣∣∣ =

= sup
λ∈σ(A)

λ3((
λ− κ

2

)2
+ ξ2

) 3
2

≤

≤ sup
λ∈σ(A)

λ3(
λ− κ

2

)3 ≤ max

{
λ30(

λ0 − κ
2

)3 , 1

}
.

Then∥∥∥∥A3
(
−
(
iξ +

κ

2

)
E +A

)−3
ĝ(ξ)

∥∥∥∥
L2(R;H)

≤ max

{
λ30(

λ0 − κ
2

)3 , 1

}
‖ĝ(ξ)‖L2(R;H) .

Similarly, we have∥∥−iξ3v̂(ξ)
∥∥
L2(R;H)

=

∥∥∥∥−iξ3 (−(iξ +
κ

2

)
E +A

)−3
ĝ(ξ)

∥∥∥∥
L2(R;H)

≤
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≤ sup
ξ∈R

∥∥∥∥−iξ3 (−(iξ +
κ

2

)
E +A

)−3∥∥∥∥
H→H

‖ĝ(ξ)‖L2(R;H) .

Hence for ξ ∈ R and κ < 2λ0, we obtain:∥∥∥∥−iξ3 (−(iξ +
κ

2

)
E +A

)−3∥∥∥∥
H→H

= sup
λ∈σ(A)

∣∣∣∣−iξ3 (−iξ − κ

2
+ λ

)−3∣∣∣∣ =

= sup
λ∈σ(A)

|ξ|3((
λ− κ

2

)2
+ ξ2

) 3
2

≤ |ξ|3((
λ0 − κ

2

)2
+ ξ2

) 3
2

≤ 1.

Then ∥∥−iξ3v̂(ξ)
∥∥
L2(R;H)

≤ ‖ĝ(ξ)‖L2(R;H) .

So v(t) ∈W 3
2 (R;H).

It is obvious that the vector-function v(t)e
κ
2
t ∈ W 3

2,κ(R;H) is a regular solu-
tion of equation (8).

We also note the fact that it is obvious that the equation P0u(t) = 0 has only
a trivial solution from space W 3

2,κ(R;H).

Thus, we have found out that the operator P0:W
3
2,κ(R;H)→L2,κ(R;H) is one-

to-one and bounded by Lemma 1. Then, by the Banach theorem on the inverse
operator, it follows that the operator P−10 :L2,κ(R;H)→W 3

2,κ(R;H) is bounded.

Therefore, P0 is an isomorphism between spaces W 3
2,κ(R;H) and L2,κ(R;H). This

proves the theorem. J

Corollary 1. For κ < 2λ0, the norms ‖P0u‖L2,κ(R;H) and ‖u‖W 3
2,κ(R;H) are equiv-

alent in the space W 3
2,κ(R;H).

Remark 1. For κ = 2λ0, the operator P0 is not invertible.

Now we study the equation (1) for Aj 6= 0, j = 1, 2, 3.
Let’s denote by P1 an operator from the space W 3

2,κ(R;H) to the space
L2,κ(R;H) defined as follows:

P1u(t) ≡ A1
d2u(t)

dt2
+A2

du(t)

dt
+A3u(t), u(t) ∈W 3

2,κ(R;H).

We have the following lemma.

Lemma 2. Let A = A∗ ≥ cE, c > 0, and the operators AjA
−j ∈ L(H), j =

1, 2, 3. Then the operator P1 is bounded from the space W 3
2,κ(R;H) to the space

L2,κ(R;H).
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Proof. Let u (t) ∈ W 3
2,κ (R;H). Taking into account the conditions of the

lemma and the theorem on intermediate derivatives [2, Ch.1], we have:

‖P1u‖L2,κ(R;H) =

∥∥∥∥A1
d2u

dt2
+A2

du

dt
+A3u

∥∥∥∥
L2,κ(R;H)

≤

≤
∥∥∥∥A1

d2u

dt2

∥∥∥∥
L2,κ(R;H)

+

∥∥∥∥A2
du

dt

∥∥∥∥
L2,κ(R;H)

+ ‖A3u‖L2,κ(R;H) ≤

≤
∥∥A1A

−1∥∥
H→H

∥∥∥∥Ad2udt2
∥∥∥∥
L2,κ(R;H)

+
∥∥A2A

−2∥∥
H→H

∥∥∥∥A2du

dt

∥∥∥∥
L2,κ(R;H)

+

+
∥∥A3A

−3∥∥
H→H

∥∥A3u
∥∥
L2,κ(R;H)

≤ const ‖u‖W 3
2,κ(R;H) ,

i.e.

‖P1u‖L2,κ(R;H) ≤ const ‖u‖W 3
2,κ(R;H) . J

Let’s denote by P an operator from W 3
2,κ (R;H) to L2,κ (R;H) defined as

follows:

Pu (t) = P0u (t) + P1u (t) , u (t) ∈W 3
2,κ (R;H) .

The following lemma is valid, for the proof of which we use Lemmas 1 and 2.

Lemma 3. Let A = A∗ ≥ cE, c > 0, and the operators AjA
−j ∈ L(H), j =

1, 2, 3. Then the operator P is a bounded operator from the space W 3
2,κ(R;H) to

the space L2,κ(R;H).

So, we can formulate the conditional theorem on solvability of equation (1).

Theorem 2. Let A = A∗ ≥ λ0E, λ0 > 0, κ < 2λ0, AjA
−j ∈ L(H), j = 1, 2, 3,

and the inequality

N1

∥∥A1A
−1∥∥

H→H +N2

∥∥A2A
−2∥∥

H→H +N3

∥∥A3A
−3∥∥

H→H < 1,

hold, where

Nj = sup
0 6=u∈W 3

2,κ(R;H)

(∥∥∥∥Aj d3−judt3−j

∥∥∥∥ ‖P0u‖−1L2,κ(R;H)

)
, j = 1, 2, 3.

Then equation (1) is regularly solvable.
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Proof. First, we rewrite equation (1) as an operator equation

Pu (t) = P0u (t) + P1u (t) = f(t), (13)

where f(t) ∈ L2,κ(R;H), u (t) ∈W 3
2,κ (R;H).

By virtue of Theorem 1, equation (8) is regularly solvable. Let’s make a
substitution P0u(t) = w(t). Then equation (13) can be rewritten as:(

E + P1 P−10

)
w(t) = f(t).

On the other hand, for every w(t) ∈ L2,κ(R;H), we have:

∥∥P1 P−10 w
∥∥
L2,κ(R;H)

= ‖P1 u‖L2,κ(R;H) ≤
∥∥A1A

−1∥∥
H→H

∥∥∥∥Ad2udt2
∥∥∥∥
L2,κ(R;H)

+

+
∥∥A2A

−2∥∥
H→H

∥∥∥∥A2du

dt

∥∥∥∥
L2,κ(R;H)

+
∥∥A3A

−3∥∥
H→H

∥∥A3u
∥∥
L2,κ(R;H)

≤

≤
∥∥A1A

−1∥∥
H→H N1 ‖P0u‖L2,κ(R;H) +

∥∥A2A
−2∥∥

H→H N2 ‖P0u‖L2,κ(R;H) +

+
∥∥A3A

−3∥∥
H→H N3 ‖P0u‖L2,κ(R;H) =

=
(
N1

∥∥A1A
−1∥∥

H→H +N2

∥∥A2A
−2∥∥

H→H +N3

∥∥A3A
−3∥∥

H→H
)
‖w‖L2,κ(R;H) .

But, as

N1

∥∥A1A
−1∥∥

H→H +N2

∥∥A2A
−2∥∥

H→H +N3

∥∥A3A
−3∥∥

H→H < 1,

the operator E + P1 P−10 is invertible in the space L2,κ(R;H). Therefore, u(t)
can be defined by the formula

u(t) = P−10

(
E + P1P

−1
0

)−1
f(t),

with
‖u‖W 3

2,κ(R;H) ≤

≤
∥∥P−10

∥∥
L2,κ(R;H)→W 3

2,κ(R;H)

∥∥∥(E + P1P
−1
0

)−1∥∥∥
L2,κ(R;H)→L2,κ(R;H)

‖f‖L2,κ(R;H) ≤

≤ const ‖f‖L2,κ(R;H) .

This proves the theorem. J

Corollary 2. Under the conditions of Theorem 2, the operator P is an isomor-
phism between the spaces W 3

2,κ(R;H) and L2,κ(R;H).
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3. Estimation of numbers Nj, j = 1, 2, 3

From Theorem 2 it becomes clear that there arises a problem of the exact
value or estimation of numbers Nj , j = 1, 2, 3.

First, we estimate the norms of intermediate derivative operators

Aj
d3−j

dt3−j
: W 3

2,κ(R;H)→ L2,κ(R;H), j = 1, 2, 3,

with respect to ‖P0u‖L2,κ(R;H) by virtue of Corollary 1 and the fact that these

operators are continuous [2].

Theorem 3. Let A = A∗ ≥ λ0E, λ0 > 0, κ < 2λ0. Then for every u(t) ∈
W 3

2,κ(R;H), the following inequalities hold:∥∥∥∥Aj d3−judt3−j

∥∥∥∥
L2,κ(R;H)

≤ cj (κ;λ0) ‖P0u‖L2,κ(R;H) , j = 1, 2, 3, (14)

where

c1(κ;λ0) =


2

33/2
(
1− κ

λ0

)1/2 , κ < λ0,

2λ0κ2

(2λ0−κ)3
, λ0 ≤ κ < 2λ0,

c2(κ;λ0) =


2

33/2
(
1− κ

λ0

) , κ < λ0,

4λ20|κ|
(2λ0−κ)3

, λ0 ≤ κ < 2λ0,

c3(κ;λ0) =

(
1− κ

2λ0

)−3
.

Proof. Note that to prove inequalities (14), it suffices to estimate the norms∥∥∥∥∥Aj
(
d

dt
+
κ

2

)3−j
v

∥∥∥∥∥
L2(R;H)

, j = 1, 2, 3,

with respect to ‖P0,κv‖L2(R;H), since the mapping v(t)→ u(t)e−
κ
2
t is an isomor-

phism between spaces W 3
2 (R;H) and W 3

2,κ(R;H).
Replacing P0,κv(t) = g(t) and applying the Fourier transform, we have∥∥∥∥Aj (iξ +

κ

2

)3−j
P−10,κ(iξ;A)ĝ(ξ)

∥∥∥∥
L2(R;H)

≤

≤ sup
ξ∈R

∥∥∥∥Aj (iξ +
κ

2

)3−j (
−
(
iξ +

κ

2

)
E +A

)−3∥∥∥∥
H→H

‖ĝ(ξ)‖L2(R;H) , j = 1, 2, 3.

(15)
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Then for ξ ∈ R and κ < 2λ0 it is necessary to estimate the norms∥∥∥∥Aj (iξ +
κ

2

)3−j (
−
(
iξ +

κ

2

)
E +A

)−3∥∥∥∥
H→H

= sup
λ∈σ(A)

∣∣∣∣∣ λj
(
iξ + κ

2

)3−j(
−iξ − κ

2 + λ
)3
∣∣∣∣∣ =

= sup
λ∈σ(A)

λj
(
ξ2 + κ2

4

) 3−j
2((

λ− κ
2

)2
+ ξ2

)3/2 , j = 1, 2, 3.

First consider the case j = 1. Solving the extremum problem, we have:

sup
λ∈σ(A)

λ
(
ξ2 + κ2

4

)
((
λ− κ

2

)2
+ ξ2

)3/2 ≤ sup
λ≥λ0, ξ∈R

ξ2

λ2
+ κ2

4λ20((
1− κ

2λ0

)2
+ ξ2

λ2

)3/2
=

= sup
ξ2

λ2
≥0

ξ2

λ2
+ κ2

4λ20((
1− κ

2λ0

)2
+ ξ2

λ2

)3/2
= c1(κ;λ0),

where c1(κ;λ0) = 2

33/2
(
1− κ

λ0

)1/2 , if κ < λ0 and c1(κ;λ0) = 2λ0κ2

(2λ0−κ)3
, if λ0 ≤ κ <

2λ0.
For j = 2 we obtain:

sup
λ∈σ(A)

λ2
(
ξ2 + κ2

4

)1/2
((
λ− κ

2

)2
+ ξ2

)3/2 ≤ sup
λ≥λ0, ξ∈R

(
ξ2

λ2
+ κ2

4λ20

)1/2
((

1− κ
2λ0

)2
+ ξ2

λ2

)3/2
=

= sup
ξ2

λ2
≥0

(
ξ2

λ2
+ κ2

4λ20

)1/2
((

1− κ
2λ0

)2
+ ξ2

λ2

)3/2
= c2(κ;λ0),

where c2(κ;λ0) = 2

33/2
(
1− κ

λ0

) , if κ < λ0 and c2(κ;λ0) =
4λ20|κ|

(2λ0−κ)3
, if λ0 ≤ κ < 2λ0.

It is obvious that in the case j = 3 we have:

sup
λ∈σ(A)

λ3((
λ− κ

2

)2
+ ξ2

)3/2 ≤ sup
λ∈σ(A)

λ3(
λ− κ

2

)3 ≤ (1− κ

2λ0

)−3
= c3(κ;λ0).
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Further, taking the obtained estimates into account in inequalities (15), we
have∥∥∥∥Aj (iξ +

κ

2

)3−j
P−10,κ(iξ;A)ĝ(ξ)

∥∥∥∥
L2(R;H)

≤ cj(κ;λ0) ‖ĝ(ξ)‖L2(R;H) , j = 1, 2, 3.

(16)
And inequalities (16), in turn, are equivalent to inequalities∥∥∥∥∥Aj

(
d

dt
+
κ

2

)3−j
v

∥∥∥∥∥
L2(R;H)

≤ cj(κ;λ0) ‖P0,κv‖L2(R;H) , j = 1, 2, 3.

This proves the theorem. J

Theorem 3 has the following direct corollary.

Corollary 3. The numbers Nj ≤ cj(κ;λ0), j = 1, 2, 3.

4. Conditions for solvability of equation (1) in space W 3
2,κ(R;H)

The above results allow us to formulate the exact theorem on the regular solv-
ability of equation (1) with the help of the properties of its operator coefficients.

Theorem 4. Let A = A∗ ≥ λ0E, λ0 > 0, κ < 2λ0 and AjA
−j ∈ L(H),

j = 1, 2, 3, and the inequality

c1(κ;λ0)
∥∥A1A

−1∥∥
H→H + c2(κ;λ0)

∥∥A2A
−2∥∥

H→H + c3(κ;λ0)
∥∥A3A

−3∥∥
H→H < 1,

hold, where cj(κ;λ0), j = 1, 2, 3, are determined in Theorem 3. Then equation
(1) is regularly solvable.

5. Appendix

We illustrate the obtained solvability conditions with an example of the prob-
lem for partial differential equations.

Consider the following problem on the strip R× [0, π]:

−
(
∂

∂t
+

∂2

∂x2

)3

u (t, x) + p (x)
∂4u (t, x)

∂x2∂t2
+ q (x)

∂5u (t, x)

∂x4∂t
+

+r (x)
∂6u (t, x)

∂x6
= f (t, x) , (17)

∂2su (t, 0)

∂x2s
=
∂2su (t, π)

∂x2s
= 0, s = 0, 1, 2, (18)
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where f (t, x) ∈ L2,κ (R;L2 [0, π]), and p (x), q (x), r (x) are functions bounded
on the interval [0, π].

It is easy to see that the problem (17), (18) reduces to equation (1) with H =

L2 [0, π], A1 = p (x) ∂2

∂x2
, A2 = q (x) ∂4

∂x4
, A3 = r (x) ∂6

∂x6
, and the operator A is

defined on L2 [0, π] by the equality Au = −d2u
dx2

with conditions u (0) = u (π) = 0.
In this case λ0 = 1.

Applying Theorem 4, we obtain that if κ < 2, then under the condition

c1 (κ; 1) sup
x∈[0,π]

|p(x)|+ c2 (κ; 1) sup
x∈[0,π]

|q(x)|+ c3 (κ; 1) sup
x∈[0,π]

|r(x)| < 1,

where

c1(κ; 1) =

{ 2

33/2(1−κ)1/2
, κ < 1,

2κ2

(2−κ)3 , 1 ≤ κ < 2,
c2(κ; 1) =

{ 2
33/2(1−κ) , κ < 1,
4|κ|

(2−κ)3 , 1 ≤ κ < 2,

c3(κ; 1) =
(

1− κ

2

)−3
,

the problem (17), (18) has a unique solution from the space W 3,6
t,x,2,κ (R;L2 [0, π]).
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