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The Existence of Solutions to Boundary Value
Problems for Differential Equations of Variable
Order
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Abstract. In this paper, we discuss the existence of solutions to a boundary value
problem for differential equations of variable order. Our results are based on the Schauder
fixed point theorem. Some examples are given to illustrate the effectiveness of our results.
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1. Introduction

In this paper, we consider the existence of solution to boundary value problem
for differential equation of variable order{

D
q(t)
0+ x(t) = f(t, x(t)), 0 < t < T,

x(0) = 0, x(T ) = 0,
(1)

where 0 < T < +∞, D
q(t)
0+ denotes derivative of variable order defined by

D
q(t)
0+ x(t) =

d2

dt2

∫ t

0

(t− s)1−q(t)

Γ(2− q(t))
x(s)ds, t > 0, (2)

and

I
2−q(t)
0+ x(t) =

∫ t

0

(t− s)1−q(t)

Γ(2− q(t))
x(s)ds, t > 0 (3)

denotes integral of variable order 2− q(t), 1 < q(t) ≤ 2, 0 ≤ t ≤ T .
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The subject of fractional calculus has gained considerable popularity and im-
portance due to its frequent appearance in different research areas and engineer-
ing, such as physics, chemistry, control of dynamical systems, etc. Recently, many
people paid attention to the existence and uniqueness of solutions to boundary
value problem for fractional differential equations, such as [1-4].

The operators of variable order, which fall into a more complex operator
category, are the derivatives and integrals whose order is the function of some
variables. The variable order fractional derivative is an extension of constant
order fractional derivative. In recent years, the operator and differential equations
of variable order have been applied in engineering more and more frequently (for
the examples and details, see [5-20], [22], [24-27]).

Although the existing literature on solutions of FBVPs is quite wide, few pa-
pers deal with the existence of solutions to BVPs with variable order. According
to (1), (2) and (3), it is clear that when q(t) is a constant function, i.e. q(t) ≡ q

(q is a finite positive constant), then I
q(t)
0+ , D

q(t)
0+ are the usual Riemann-Liouville

fractional integral and derivative [21].

The following properties of fractional calculus operators Dq
0+, Iq0+ play an

important part in discussing the existence of solutions of fractional differential
equations.

Proposition 1. [21] The equality Iγ0+I
δ
0+f(t) = Iγ+δ

0+ f(t), γ > 0, δ > 0 holds for
f ∈ L(0, b), 0 < b < +∞.

Proposition 2. [21] The equality Dγ
0+I

γ
0+f(t) = f(t), γ > 0 holds for f ∈

L(0, b), 0 < b < +∞.

Proposition 3. [21] Let 1 < α ≤ 2. Then the differential equation

Dα
0+u = 0

has a unique solution

u(t) = c1t
α−1 + c2t

α−2, c1, c2 ∈ R.

Proposition 4. [21] Let 1 < α ≤ 2, u(t) ∈ L(0, b), Dα
0+u ∈ L(0, b). Then the

following equality holds

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2, c1, c2 ∈ R.

A key point is whether the above properties of fractional calculus operators
remain true for the operators of variable order.
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Let’s consider Proposition 1 for example. To begin with the simplest case, we

let f(t) ≡ 1, t ∈ [0, T ] and calculate I
p(t)
0+ I

q(t)
0+ f(t).

According to (3), we have

I
p(t)
0+ I

q(t)
0+ f(t) =

∫ t

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
f(τ)dτds

=

∫ t

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds

=

∫ t

0

(t− s)p(t)−1sq(s)

Γ(p(t))Γ(1 + q(s))
ds

=
tp(t)

Γ(p(t))

∫ 1

0

tq(tr)

Γ(1 + q(tr))
(1− r)p(t)−1rq(tr)dr.

And secondly, we have

I
p(t)+q(t)
0+ f(t) =

∫ t

0

(t− s)p(t)+q(t)−1

Γ(p(t) + q(t))
f(s)ds =

tp(t)+q(t)

Γ(1 + p(t) + q(t))
.

Thus, for f(t) ≡ 1, we can obtain

I
p(t)
0+ I

q(t)
0+ f(t) = I

p(t)+q(t)
0+ f(t),

if ∫ 1

0

tq(tr)

Γ(1 + q(tr))
(1− r)p(t)−1rq(tr)dr =

β(p(t), q(t) + 1)

Γ(q(t) + 1)
tq(t).

However, we can’t assert that the above equality is true.
What we can get is

1

Γ(1 + q(t))

∫ 1

0
tq(t)rq(t)(1− r)p(t)−1dr =

β(p(t), q(t) + 1)

Γ(q(t) + 1)
tq(t).

Therefore, for general functions p(t), q(t) and f(t), we have

I
p(t)
0+ I

q(t)
0+ f(t) 6= I

p(t)+q(t)
0+ f(t). (4)

In particular,for general functions 0 < p(t) < 1 and f(t), we have

I
p(t)
0+ I

1−p(t)
0+ f(t) 6= I

p(t)+1−p(t)
0+ f(t) = I1

0+f(t).

The following example illustrates that inequality (4) is valid.
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Example 1. Let p(t) = t, f(t) = 1, 0 ≤ t ≤ 6 and the function q(t) be defined
by

q(t) =


t
2 , 0 ≤ t ≤ 2,

1, 2 < t ≤ 3,
t
3 , 3 < t ≤ 6.

Now, we calculate I
p(t)
0+ I

q(t)
0+ f(t)|t=3 and I

p(t)+q(t)
0+ f(t)|t=3 defined by (3).

I
p(t)
0+ I

q(t)
0+ f(t) =

∫ t

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
f(τ)dτds

=

∫ 2

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds+∫ t

2

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds

=

∫ 2

0

(t− s)t−1

Γ(t)

∫ s

0

(s− τ)
s
2
−1

Γ( s2)
dτds+∫ t

2

(t− s)t−1

Γ(t)

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds

=

∫ 2

0

(t− s)t−1s
s
2

Γ(t)Γ(1 + s
2)
ds+

∫ t

2

(t− s)t−1

Γ(t)

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds.

So, we have

I
p(t)
0+ I

q(t)
0+ f(t)|t=3 =

∫ 2

0

(3− s)3−1s
s
2

Γ(3)Γ(1 + s
2)
ds+

∫ 3

2

(3− s)3−1

Γ(3)

∫ s

0

(s− τ)1−1

Γ(1)
dτds

=

∫ 2

0

(3− s)2s
s
2

Γ(3)Γ(1 + s
2)
ds+

∫ 3

2

(3− s)2s

Γ(3)
ds

=

∫ 2

0

(3− s)2s
s
2

Γ(3)Γ(1 + s
2)
ds+

3

8

≈ 4.660 + 0.375

= 5.035.

On the other hand, we get

I
p(t)+q(t)
0+ f(t)|t=3 =

∫ 3

0

(3− s)p(3)+q(3)−1

Γ(p(3) + q(3))
f(s)ds

=

∫ 3

0

(3− s)3+1−1

Γ(3 + 1)
ds
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=
27

8
= 3.375.

Obviously,

I
p(t)
0+ I

q(t)
0+ f(t)|t=3 6= I

p(t)+q(t)
0+ f(t)|t=3.

Now, we can conclude that Propositions 1-4 do not hold for D
q(t)
0+ and I

q(t)
0+ .

So, one can not transform a differential equation of variable order into an
equivalent interval equation without the Propositions 1, 2, 3 and 4. It is a difficulty
for us in dealing with the boundary value problems for differential equations of
variable order. Since the equations described by the variable order derivatives
are highly complex, difficult to handle analytically, it is necessary and significant
to investigate their solutions.

In [22], the authors study the Cauchy problem for variable order differential
equations with a piecewise constant order function. In this paper, we study
the boundary value problem (1) for variable order differential equations with a
piecewise constant order function q(t).

The paper is organized as follows. In Section 2, we provide some necessary
definitions associated with the problem (1). In Section 3, we establish the exis-
tence of solutions for (1) by using the Schauder fixed point theorem. In Section
4, some examples are presented to illustrate the main results.

2. Preliminaries

For the convenience of the reader, we present here some necessary definitions
that will be used to prove our main theorems.

Definition 1. A generalized interval is a subset I of R which is either an interval
(i.e. a set of the form [a, b], (a, b), [a, b) or (a, b]); a point {a}; or the empty set
∅.

Definition 2. Let I be a generalized interval. A partition of I is a finite set P
of generalized intervals contained in I, such that every x in I lies in exactly one
of the generalized intervals J in P .

Example 2. The set P =
{
{1}, (1, 6), [6, 7), {7}, (7, 8]

}
of generalized intervals

is a partition of [1, 8].

Definition 3. [22, 23] Let I be a generalized interval, f : I → R be a function,
and P be a partition of I. f is said to be piecewise constant with respect to P if
for every J ∈ P , f is constant on J .
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Example 3. The function f : [1, 6]→ R defined by

f(x) =


3, 1 ≤ x < 3,

4, x = 3,

5, 3 < x < 6,

2, x = 6,

is piecewise constant with respect to the partition
{

[1, 3), {3}, (3, 6), {6}
}

of [1, 6].

3. Main Results

We need the following assumptions:

(H1) Let P = {[0, T1], (T1, T2], (T2, T3], · · · , (TN−1, T ]} be a partition of the
interval [0, T ], and let q(t) : [0, T ]→ (1, 2] be a piecewise constant function with
respect to P , i.e.

q(t) =
N∑
k=1

qkIk(t) =


q1, 0 ≤ t ≤ T1,

q2, T1 < t ≤ T2,

· · · , · · · ,
qN , TN−1 < t ≤ TN = T,

(5)

where 1 < qk ≤ 2 (k = 1, 2, · · · , N) are constants, and Ik is the indicator of the
interval [Tk−1, Tk], k = 1, 2, · · · , N (here T0 = 0, TN = T ), that is, Ik(t) = 1 for
t ∈ [Tk−1, Tk] and Ik(t) = 0 for elsewhere.

(H2) Let trf : [0, T ]×R→ R be a continuous function (0 ≤ r < 1).

(H3) There exist constants c1 > 0, c2 > 0, 0 < γ < 1 such that

tr|f(t, x)| ≤ c1 + c2|x|γ , 0 ≤ t ≤ T, x ∈ R.

(H4) There exist constants d1 > 0, d2 > 0 satisfying

d2 <
Γq

4Γ(1− r)T ∗
,

such that

tr|f(t, x)| ≤ d1 + d2|x|, 0 ≤ t ≤ T, x ∈ R,

where

T ∗ = max{T 1−r, T 2−r},Γq = min{Γ(1− r+ q1),Γ(1− r+ q2), · · · ,Γ(1− r+ qN )}.
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(H5) There exist constants e1 ≥ 0, e2 > 0, µ > 1 satisfying

4e1Γ(1− r)T ∗

Γq
<

(
Γq

4e2Γ(1− r)T ∗

) 1
µ−1

,

such that
tr|f(t, x)| ≤ e1 + e2|x|µ, 0 ≤ t ≤ T, x ∈ R.

In order to obtain our main results, we first carry out essential analysis of
(1).
According to (H1), we have∫ t

0

(t− s)1−q(t)

Γ(2− q(t))
x(s)ds =

N∑
k=1

Ik(t)

∫ t

0

(t− s)1−qk

Γ(2− qk)
x(s)ds.

Then, the equation (1) can be written as

d2

dt2

N∑
k=1

Ik(t)

∫ t

0

(t− s)1−qk

Γ(2− qk)
x(s)ds = f(t, x(t)), 0 < t < T. (6)

Moreover, equation (6) in the interval [0, T1] can be written as

Dq1
0+x(t) = f(t, x(t)), 0 < t ≤ T1. (7)

Equation (6) in the interval (T1, T2] can be written as

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = f(t, x), T1 < t ≤ T2, (8)

and equation (6) in the interval (T2, T3] can be written as

d2

dt2

∫ t

0

(t− s)1−q3

Γ(2− q3)
x(s)ds = f(t, x), T2 < t ≤ T3. (9)

In the same way, equation (6) in the interval (Ti, Ti+1], i = 3, 4, · · · , N − 2 can
be written as

d2

dt2

∫ t

0

(t− s)1−qi+1

Γ(2− qi+1)
x(s)ds = f(t, x), Ti < t ≤ Ti+1. (10)

As for the last interval (TN−1, T ], similar to above argument, equation (6) can
be written as

d2

dt2

∫ t

0

(t− s)1−qN

Γ(2− qN )
x(s)ds = f(t, x), TN−1 < t < T. (11)

Now, we present definition of solution to problem (1), which is fundamental
in our work.
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Definition 4. We say the boundary value problem (1) has a solution, if there exist
functions ui(t), i = 1, 2, · · · , N such that u1 ∈ C[0, T1] satisfying equation (7) and
u1(0) = u1(T1) = 0; u2 ∈ C[0, T2] satisfying equation (8) and u2(0) = u2(T2) = 0;
u3 ∈ C[0, T3] satisfying equation (9) and u3(0) = u3(T3) = 0; ui ∈ C[0, Ti]
satisfying equation (10) and ui(0) = ui(Ti) = 0(i = 4, 5, · · · , N−1); uN ∈ C[0, T ]
satisfying equation (11) and uN (0) = uN (T ) = 0.

Theorem 1. Assume that conditions (H1) − (H3) hold. Then problem (1) has
one solution.

Proof. According to above analysis, equation of problem (1) can be written
as equation (6). Equation (6) in the interval [0, T1] can be written as

Dq1
0+x(t) = f(t, x(t)), 0 < t ≤ T1.

Applying the operator Iq10+ to both sides of the above equation, by Propositions
1− 4 , we have

x(t) = c1t
q1−1 + c2t

q1−2 +
1

Γ(q1)

∫ t

0
(t− s)q1−1f(s, x(s))ds, 0 ≤ t ≤ T1.

By x(0) = 0 and the assumption on function f , we get c2 = 0. Let x(t) satisfy
x(T1) = 0. Then we get c1 = −Iq10+f(T1, x)T 1−q1

1 . We have

x(t) = −Iq10+f(T1, x)T 1−q1
1 tq1−1 + Iq10+f(t, x(t)), 0 ≤ t ≤ T1.

Define the operator T : C[0, T1]→ C[0, T1] by

Tx(t) = −Iq10+f(T1, x)T 1−q1
1 tq1−1 + Iq10+f(t, x(t)), 0 ≤ t ≤ T1. (12)

It follows from the properties of fractional integrals and assumptions on function
f that the operator T : C[0, T1]→ C[0, T1] defined in (12) is well defined. By the
standard arguments, we can verify that T : C[0, T1] → C[0, T1] is a completely
continuous operator.

Let Ω1 = {x ∈ C[0, T1] : ‖x‖ ≤ R1} be a bounded closed convex subset of
C[0, T1], where

R1 = max

{
4c1T

q1−r
1 Γ(1− r)

Γ(1 + q1 − r)
,

(
4c2T

q1−r
1 Γ(1− r)

Γ(1 + q1 − r)

) 1
1−γ
}
.

For x ∈ Ω1 and by (H3), we have

|Tx(t)| ≤ T 1−q1
1 tq1−1

Γ(q1)

∫ T1

0
(T1 − s)q1−1|f(s, x(s))|ds
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+
1

Γ(q1)

∫ t

0
(t− s)q1−1|f(s, x(s))|ds

≤ 2

Γ(q1)

∫ T1

0
(T1 − s)q1−1|f(s, x(s))|ds

≤ 2

Γ(q1)

∫ T1

0
(T1 − s)q1−1s−r(c1 + c2|x(s)|γ)ds

≤ 2Γ(1− r)T q1−r1

Γ(1 + q1 − r)
(c1 + c2‖x‖γ)

≤ 2Γ(1− r)T q1−r1

Γ(1 + q1 − r)
(c1 + c2R1R

γ−1
1 )

≤ R1

2
+
R1

2
= R1,

which means that T (Ω1) ⊆ Ω1. Then the Schauder fixed point theorem assures
that the operator T has one fixed point x1(t) ∈ Ω1, which is a solution of equation
(7).

Also, we have obtained that the equation (6) in the interval (T1, T2] can be
written as (8). To consider the existence of solution to (8), we may discuss the
following equation defined on interval [0, T2] :

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = Dq2

0+x(t) = f(t, x), 0 < t ≤ T2. (13)

It is clear that if function x(t) ∈ C[0, T2] satisfies equation (13), then x(t)
must satisfy equation (8). In fact, if x ∈ C[0, T2] with x(0) = x(T2) = 0 is a
solution of equation (13), then

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = f(t, x), 0 < t ≤ T2.

As a result, we have x(t) ∈ C[0, T2] with x(0) = x(T2) = 0 satisfying the equation

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = f(t, x), T1 ≤ t ≤ T2,

which means the function x(t) ∈ C[0, T2] with x(0) = x(T2) = 0 is a solution of
equation (8).
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Based on this fact, we will consider the existence of solution to equation (13)
with the conditions x(0) = x(T2) = 0. Applying operator Iq20+ to both sides of
(13) and by Propositions 1− 4 , we have

x(t) = c1t
q2−1 + c2t

q2−2 +
1

Γ(q2)

∫ t

0
(t− s)q2−1f(s, x(s))ds, 0 ≤ t ≤ T2. (14)

By x(0) = 0 = x(T2), we have c2 = 0 and c1 = −Iq20+f(T2, x)T 1−q2
2 .

Define the operator T : C[0, T2]→ C[0, T2] by

Tx(t) = −Iq20+f(T2, x))T 1−q2
2 tq2−1 +

1

Γ(q2)

∫ t

0
(t− s)q2−1f(s, x(s))ds.

It follows from the continuity of functions trf(t, x(t)) that the operator T :
C[0, T2] → C[0, T2] is well defined. We note that T : C[0, T2] → C[0, T2] is a
completely continuous operator.

Let Ω2 = {x ∈ C[0, T2] : ‖x‖ ≤ R2} be a bounded closed convex subset of
C[0, T2], where

R2 = max

{
4c1Γ(1− r)T q2−r2

Γ(1 + q2 − r)
,

(
4c2Γ(1− r)T q2−r2

Γ(1 + q2 − r)

) 1
1−γ
}
.

For x ∈ Ω2, by (H3), we get

|Tx(t)| ≤ T 1−q2
2 tq2−1

Γ(q2)

∫ T2

0
(T2 − s)q2−1|f(s, x(s))|ds

+
1

Γ(q2)

∫ t

0
(t− s)q2−1|f(s, x(s))|ds

≤ 2

Γ(q2)

∫ T2

0
(T2 − s)q2−1|f(s, x(s))|ds

≤ 2

Γ(q2)

∫ T2

0
(T2 − s)q2−1s−r(c1 + c2|x(s)|γ)ds

≤ 2Γ(1− r)T q2−r2

Γ(1 + q2 − r)
(c1 + c2R2R

γ−1
2 )

≤ R2

2
+
R2

2
= R2,
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which means that T (Ω2) ⊆ Ω2. Then the Schauder fixed point theorem assures
that the operator T has one fixed point x2(t) ∈ Ω2, that is

x2(t) = −Iq20+f(T2, x2)T 1−q2
2 tq2−1 +

1

Γ(q2)

∫ t

0
(t− s)q2−1f(s, x2(s))ds, 0 ≤ t ≤ T2.

(15)
Applying operator Dq2

0+ to both sides of (15), by Proposition 2, we can obtain
that

Dq2
0+x2(t) = f(t, x2), 0 < t ≤ T2,

that is, x2(t) satisfies the following equation

d2

dt2
1

Γ(2− q2)

∫ t

0
(t− s)1−q2x2(s)ds = f(t, x2), 0 < t ≤ T2.

From the previous arguments, we know that x2(t) ∈ Ω2 satisfies equation (8).
Again, we know that the equation (6) in the interval (T2, T3] can be written

as (9). In order to consider the existence of solution to equation (9), we may
investigate the following equation defined on interval [0, T3] :

d2

dt2

∫ t

0

(t− s)1−q3

Γ(2− q3)
x(s)ds = Dq3

0+x(t) = f(t, x), 0 < t ≤ T3. (16)

From the previous arguments, we note that if function x(t) ∈ C[0, T3] satisfies
equation (16), then x(t) must satisfy equation (9). Now, we will consider the
existence of solution to equation (16)with the boundary condition x(0) = 0 =
x(T3).

Applying the operator Iq30+ to both sides of (16), by Propositions 1 − 4 , we
get

x(t) = c1t
q3−1 + c2t

q3−2 +
1

Γ(q3)

∫ t

0
(t− s)q3−1f(s, x(s))ds, 0 ≤ t ≤ T3.

By x(0) = 0 = x(T3), we get c2 = 0 and c1 = −Iq30+f(T3, x)T 1−q3
3 .

Define the operator T : C[0, T3]→ C[0, T3] by

Tx(t) = −Iq30+f(T3, x)T 1−q3
3 tq3−1+

1

Γ(q3)

∫ t

0
(t− s)q3−1f(s, x(s))ds, 0 ≤ t ≤ T3.

It follows from the continuity of functions trf(t, x(t)) that the operator T :
[0, T3]→ C[0, T3] is well defined. Furthermore, we can obtain that T : C[0, T3]→
C[0, T3] is completely continuous.
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Let Ω3 = {x ∈ C[0, T3] : ‖x‖ ≤ R3} be a bounded closed convex subset of
C[0, T3], where

R3 = max

{
4c1Γ(1− r)T q3−r3

Γ(1 + q3 − r)
,

(
4c2Γ(1− r)T q3−r3

Γ(1 + q3 − r)

) 1
1−γ
}
.

For x ∈ Ω3, by (H3), we have

|Tx(t)| ≤ 2

Γ(q3)

∫ T3

0
(T3 − s)q3−1|f(s, x(s))|ds

≤ 2

Γ(q3)

∫ T3

0
(T3 − s)q3−1s−r(c1 + c2|x(s)|γ)ds

≤2Γ(1− r)T q3−r3

Γ(1 + q3 − r)
(c1 + c2R3R

γ−1
3 )

≤R3

2
+
R3

2
= R3,

which means that T (Ω3) ⊆ Ω3. Then the Schauder fixed point theorem assures
that the operator T has one fixed point x3(t) ∈ Ω3, that is,

x3(t) = −Iq30+f(T3, x3)T 1−q3
3 tq3−1 +

1

Γ(q3)

∫ t

0
(t−s)q3−1f(s, x3(s))ds. 0 ≤ t ≤ T3,

(17)
Applying the operator Dq3

0+ to both sides of (17), by Proposition 2, we can obtain
that

Dq3
0+x3(t) = f(t, x3), 0 < t ≤ T3,

that is, x3(t) satisfies the following equation

d2

dt2
1

Γ(2− q3)

∫ t

0
(t− s)1−q3x3(s)ds = f(t, x3(t)), 0 < t ≤ T3.

From the previous arguments, we know that x3(t) ∈ Ω3 satisfies equation (9).
In a similar way, we can obtain that the equation (10) defined on [Ti−1, Ti]

has solution xi(t) ∈ Ωi with xi(0) = xi(Ti) = 0, i = 4, 5, · · · , N − 1, where

Ri = max

{
4c1Γ(1− r)T qi−ri

Γ(1 + qi − r)
,

(
4c2Γ(1− r)T qi−ri

Γ(1 + qi − r)

) 1
1−γ
}
.

Similar to the above argument, in order to consider the existence of solution to
equation (11), we may consider the following equation defined on interval [0, T ] :

d2

dt2

∫ t

0

(t− s)1−qN

Γ(2− qN )
x(s)ds = DqN

0+x(t) = f(t, x), 0 < t < T. (18)
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From the previous arguments, we know, if function x(t) ∈ C[0, T ] satisfies
equation (18), then x(t) must satisfy equation (11). Now, we consider the exis-
tence of solution to equation (18) with boundary conditions x(0) = 0, x(T ) = 0.
Applying the operator IqN0+ to both sides of (18), by Propositions 1− 4 , we have

x(t) = c1t
qN−1 + c2t

qN−2 +
1

Γ(qN )

∫ t

0
(t− s)qN−1f(s, x(s))ds, 0 ≤ t ≤ T.

By conditions x(0) = 0, x(T ) = 0, we obtain c2 = 0 and c1 = −IqN0+f(T, x)T 1−qN .
Define the operator T : C[0, T ]→ C[0, T ] by

Tx(t) = −IqN0+f(T, x)T 1−qN tqN−1 +
1

Γ(qN )

∫ t

0
(t− s)qN−1f(s, x(s))ds.

It follows from the continuity of functions trf(t, x(t)) that the operator T :
[0, T ] → C[0, T ] is well defined. By the standard arguments, we can obtain
that T : C[0, T ]→ C[0, T ] is completely continuous.

Let ΩN = {x ∈ C[0, T ] : ‖x‖ ≤ RN} be a bounded closed convex subset of
C[0, T ], where

RN = max

{
4c1Γ(1− r)T qN−r

Γ(1 + qN − r)
,

(
4c2Γ(1− r)T qN−r

Γ(1 + qN − r)

) 1
1−γ
}
.

For x(t) ∈ ΩN , by (H3), we have

|Tx(t)| ≤2Γ(1− r)T qN−r

Γ(1 + qN − r)
(c1 + c2RNR

γ−1
N )

≤RN
2

+
RN
2

= RN ,

which means that T (ΩN ) ⊆ ΩN . Then the Schauder fixed point theorem assures
that the operator T has one fixed point xN (t) ∈ ΩN , that is,

xN (t) = −IqN0+f(T, xN )T 1−qN tqN−1 +
1

Γ(qN )

∫ t

0
(t− s)qN−1f(s, xN (s))ds, 0 ≤ t ≤ T.

Applying operator DqN
0+ to both sides of the above equation, by Proposition 2, we

can obtain that
DqN

0+xN (t) = f(t, xN (t)), 0 < t ≤ T,

that is, xN (t) satisfies the following equation

d2

dt2
1

Γ(2− qN )

∫ t

0
(t− s)1−qNxN (s)ds = f(t, xN (t)), 0 < t ≤ T.



The Existence of Solutions to Boundary Value Problems 35

From the previous arguments, we know that xN (t) ∈ ΩN satisfies equation (11).
As a result, we know that the problem (1) has a solution. Thus we complete

the proof. J

Using similar arguments, we can obtain the following results.

Theorem 2. Assume the conditions (H1), (H2) and (H4) hold. Then problem
(1) has one solution.

Proof. The proof is similar to that of Theorem 1. By (H1), we obtain that
the equation of problem (1) can be written as (6). And, (6) in the interval [0, T1]
can be written as (7).
Applying the operator Iq10+ to both sides of (8), by Propositions 1 − 4, we have
that

x(t) = c1t
q1−1 + c2t

q1−2 +
1

Γ(q1)

∫ t

0
(t− s)q1−1f(s, x(s))ds, 0 ≤ t ≤ T1.

We will consider the existence of solution x(t) defined on [0, T1]. By the boundary
condition x(0) = 0 and the assumption on function f , we get c2 = 0. Setting
x(T1) = 0, we have c1 = −Iq10+f(T1, x)T 1−q1

1 . Then, we have

x(t) = −Iq10+f(T1, x)T 1−q1
1 tq1−1 + Iq10+f(t, x), 0 ≤ t ≤ T1.

Define the operator T : C[0, T1]→ C[0, T1] by

Tx(t) = −Iq10+f(T1, x)T 1−q1
1 tq1−1 + Iq10+f(t, x), 0 ≤ t ≤ T1.

It follows from the properties of fractional integrals and assumptions on function
f that the operator T : C[0, T1] → C[0, T1] is well defined. By the standard
arguments, we can verify that T : C[0, T1]→ C[0, T1] is a completely continuous
operator.

Let Ω1 = {x ∈ C[0, T1] : ‖x‖ ≤ R1} be a bounded closed convex subset of
C[0, T1], where

R1 >
4d1Γ(1− r)T ∗

Γq
.

For x ∈ Ω1, by (H4), we have

|Tx(t)| ≤ 2Γ(1− r)T q1−r1

Γ(1 + q1 − r)
(d1 + d2R1)

≤ 2Γ(1− r)T q1−r

Γq
(d1 + d2R1)
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≤ 2Γ(1− r)T ∗

Γq
(d1 + d2R1)

≤ R1

2
+
R1

2
= R1,

which means that T (Ω1) ⊆ Ω1. Then the Schauder fixed point theorem assures
that the operator T has one fixed point x1(t) ∈ Ω1, which is one solution of
equation (7).

Equation (6) in the interval (T1, T2] can be written as (8). In order to dis-
cuss the existence of solution to equation (8), we consider the following equation
defined on interval [0, T2]

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = Dq2

0+x(t) = f(t, x(t)), 0 < t ≤ T2. (19)

We see that if function x(t) ∈ C[0, T2] satisfies equation (19), then x(t) must
satisfy equation (8). In fact, if x ∈ C[0, T2] with x(0) = x(T2) = 0 is a solution
of equation (19), then

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = f(t, x), 0 < t ≤ T2.

As a result, we obtain that x(t) ∈ C[0, T2] with x(0) = x(T2) = 0 satisfies

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = f(t, x), T1 ≤ t ≤ T2,

which means that x(t) ∈ C[0, T2] with x(0) = x(T2) = 0 is a solution of equation
(8).

Next, we will consider the existence of solution to equation (3.15) with con-
ditions x(0) = 0 = x(T2).
Applying operator Iq20+ to both sides of (19), by Propositions 1− 4 , we have

x(t) = c1t
q2−1 + c2t

q2−2 +
1

Γ(q2)

∫ t

0
(t− s)q2−1f(s, x(s))ds, 0 ≤ t ≤ T2.

By conditions x(0) = 0 = x(T2) = 0, we have c2 = 0 and c1 = −Iq20+f(T2, x)T 1−q2
2 .

Define the operator T : C[0, T2]→ C[0, T2] by

Tx(t) = −Iq20+f(T2, x))T 1−q2
2 tq2−1+

1

Γ(q2)

∫ t

0
(t− s)q2−1f(s, x(s))ds, 0 ≤ t ≤ T2.
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It follows from the continuity of functions trf(t, x(t)) that the operator T :
C[0, T2] → C[0, T2] is well defined. Moreover, we can obtain that T : C[0, T2] →
C[0, T2] is a completely continuous operator.

Let Ω2 = {x ∈ C[0, T2] : ‖x‖ ≤ R2} be a bounded closed convex subset of
C[0, T2], where

R2 >
4d1Γ(1− r)T ∗

Γq
.

For x ∈ Ω2, by (H4), we have

|Tx(t)| ≤2Γ(1− r)T q2−r2

Γ(1 + q2 − r)
(d1 + d2R2)

≤2Γ(1− r)T ∗

Γq
(d1 + d2R2)

≤R2

2
+
R2

2
= R2,

which means that T (Ω2) ⊆ Ω2. Then the Schauder fixed point theorem assures
that the operator T has one fixed point x2(t) ∈ Ω2. By the same arguments as
in the proof of Theorem 1, we obtain that x2(t) ∈ Ω2 satisfies equation (8).

In a similar way, we obtain that equation (10) defined on [Ti−1, Ti] has a
solution xi(t) ∈ C[0, Ti] with xi(0) = xi(Ti) = 0, i = 3, 4, · · · , N − 1.

Equation (6) in the interval (TN−1, T ] can be written as (11). In order to
consider the existence of solution to equation (11), we may consider the following
equation defined on interval [0, T ] :

d2

dt2

∫ t

0

(t− s)1−qN

Γ(2− qN )
x(s)ds = DqN

0+x(t) = f(t, x(t)), 0 < t < T. (20)

From the previous arguments, we know, if function x(t) ∈ C[0, T ] satisfies equa-
tion (20), then x(t) must satisfy equation (11). Based on this fact, we will consider
existence of solution to equation (20) with boundary conditions x(0) = 0, x(T ) =
0.
Applying the operator IqN0+ to both sides of (3.16), by Propositions 1−4 , we have

x(t) = c1t
qN−1 + c2t

qN−2 +
1

Γ(qN )

∫ t

0
(t− s)qN−1f(s, x(s))ds, 0 ≤ t ≤ T.

By x(0) = 0, x(T ) = 0, we have c2 = 0 and c1 = −IqN0+f(T, x)T 1−qN .
Define the operator T : C[0, T ]→ C[0, T ] by

Tx(t) = −IqN0+f(T, x)T 1−qN tqN−1 +
1

Γ(qN )

∫ t

0
(t− s)qN−1f(s, x(s))ds, 0 ≤ t ≤ T.
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It follows from the continuity of functions trf(t, x(t)) that the operator T :
[0, T ] → C[0, T ] is well defined. By the standard arguments, we can obtain
that T : C[0, T ]→ C[0, T ] is completely continuous.

Let ΩN = {x ∈ C[0, T ] : ‖x‖ ≤ RN} be a bounded closed convex subset of
C[0, T ], where

RN >
4d1Γ(1− r)T ∗

Γq
.

For x ∈ ΩN , by (H4), we have

|Tx(t)| ≤2Γ(1− r)T qN−r

Γ(1 + qN − r)
(d1 + d2RN )

≤2Γ(1− r)T ∗

Γq
(d1 + d2RN )

≤RN
2

+
RN
2

= RN ,

which means that T (ΩN ) ⊆ ΩN . Then the Schauder fixed point theorem assures
that the operator T has one fixed point xN (t) ∈ ΩN . By the same arguments as
in the proof of Theorem 1, we obtain that xN (t) ∈ ΩN satisfies equation (11).

As a result, we conclude that the problem (1) has a solution. Thus we com-
plete this proof. J

Theorem 3. Assume that conditions (H1), (H2) and (H5) hold. Then problem
(1) has one solution.

Proof. This proof is also similar to that of Theorem 1. Equation of (1) can
be written as (6). And, equation (6) in the interval [0, T1] can be written as (6).
Applying operator Iq10+ to both sides of (7), by Propositions 1− 4 , we have

x(t) = c1t
q1−1 + c2t

q1−2 +
1

Γ(q1)

∫ t

0
(t− s)q1−1f(s, x(s))ds, 0 ≤ t ≤ T1.

We will consider the existence of solution x(t) defined on [0, T1]. By the boundary
condition x(0) = 0 and assumption on function f , we get c2 = 0. Let x(T1) = 0.
Then, c1 = −Iq10+f(T1, x)T 1−q1

1 .
As a result, we have

x(t) = −Iq10+f(T1, x)T 1−q1
1 tq1−1 + Iq10+f(t, x), 0 ≤ t ≤ T1.
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Define the operator T : C[0, T1]→ C[0, T1] by

Tx(t) = −Iq10+f(T1, x)T 1−q1
1 tq1−1 + Iq10+f(t, x), 0 ≤ t ≤ T1.

It follows from the properties of fractional integrals and assumptions on function
f that the operator T : C[0, T1] → C[0, T1] is well defined. By the standard
arguments, we can verify that T : C[0, T1]→ C[0, T1] is a completely continuous
operator.

Let Ω1 = {x ∈ C[0, T1] : ‖x‖ ≤ R1} be a bounded closed convex subset of
C[0, T1], where

4e1Γ(1− r)T ∗

Γq
< R1 <

(
Γq

4e2Γ(1− r)T ∗

) 1
µ−1

.

For x ∈ Ω1, by (H5) , we have

|Tx(t)| ≤2Γ(1− r)T q1−r1

Γ(1 + q1 − r)
(e1 + e2R1R

µ−1
1 )

≤2Γ(1− r)T ∗

Γq
(e1 + e2R1R

µ−1
1 )

≤R1

2
+
R1

2
= R1,

which means that T (Ω1) ⊆ Ω1. Then the Schauder fixed point theorem assures
that the operator T has one fixed point x1 ∈ Ω1, which is one solution of equation
(7).

Equation (6) in the interval (T1, T2] can be written as (8). In order to con-
sider the existence of solution to equation (8), we consider the following equation
defined on interval [0, T2] :

d2

dt2

∫ t

0

(t− s)1−q2

Γ(2− q2)
x(s)ds = Dq2

0+x(t) = f(t, x), 0 < t ≤ T2. (21)

Using same arguments as in the proof of Theorem 1, we see that if function
x(t) ∈ C[0, T2] satisfies equation (21), then x(t) must satisfy equation (8). Now,
we will consider the existence of solution to equation (21) with conditions x(0) =
0, x(T2) = 0.
Applying operator Iq20+ to both sides of (21), by Propositions 1− 4 , we have

x(t) = c1t
q2−1 + c2t

q2−2 +
1

Γ(q2)

∫ t

0
(t− s)q2−1f(s, x(s))ds, 0 ≤ t ≤ T2.

By conditions x(0) = 0, x(T2) = 0, we have c2 = 0 and c1 = −Iq20+f(T2, x)T 1−q2
2 .
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Define the operator T : C[0, T2]→ C[0, T2] by

Tx(t) = −Iq20+f(T2, x)T 1−q2
2 tq2−1 +

1

Γ(q2)

∫ t

0
(t− s)q2−1f(s, x(s))ds.

It follows from the continuity of functions trf(t, x(t)) that the operator T :
C[0, T2]→ C[0, T2] is well defined. Then we can obtain T : C[0, T2]→ C[0, T2] is
a completely continuous operator.

Let Ω2 = {x ∈ C[0, T2] : ‖x‖ ≤ R2} be a bounded closed convex subset of
C[0, T2], where

4e1Γ(1− r)T ∗

Γq
< R2 <

(
Γq

4e2Γ(1− r)T ∗

) 1
µ−1

.

For x(t) ∈ Ω2, by (H5) we get

|Tx(t)| ≤ 2Γ(1− r)T q2−r2

Γ(1 + q2 − r)
(e1 + e2R2R

µ−1
2 )

≤ 2Γ(1− r)T ∗

Γq
(e1 + e2R2R

µ−1
2 )

≤ R2

2
+
R2

2
= R2,

which means that T (Ω2) ⊆ Ω2. Then the Schauder fixed point theorem assures
that the operator T has one fixed point x2(t) ∈ Ω2. By the same arguments as
in the proof of Theorem 1, we obtain that x2(t) ∈ Ω2 satisfies equation (8).

In a similar way, we obtain that thee equation (10) defined on [Ti−1, Ti] (TN =
T ), has solution xi(t) ∈ Ωi = {x ∈ C[0, Ti]; ‖x‖ ≤ Ri} , i = 3, 4, · · · , N , where

4e1Γ(1− r)T ∗

Γq
< Ri <

(
Γq

4e2Γ(1− r)T ∗

) 1
µ−1

,

Hence, problem (1) has a solution. The proof is completed. J

Consider the following problem{
D
q(t)
0+ x(t) = b1(t)xγ + b2(t)xµ + b3(t)x, 0 < t < T,

x(0) = 0, x(T ) = 0,
(22)

where 0 < T < +∞, q(t) satisfies (H1), 0 < γ < 1, µ > 1, trbi(t) ∈ C[0, T ].

Combining Theorems 1, 2 and 3, we have the following result.
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Theorem 4. Let 0 < γ < 1, µ > 1, trbi(t) ∈ C[0, T ], i = 1, 2, 3 with max0≤t≤T t
r|b3(t)| <

Γq
4Γ(1−r)T ∗ , and assume that the condition (H1) holds. Then problem (22) has one
solution.

Proof. It follows from Theorems 1, 2 and 3 that two-point boundary value
problems{

D
q(t)
0+ x(t) = b1(t)xγ , 0 < t < T,

x(0) = 0, x(T ) = 0,
,

{
D
q(t)
0+ x(t) = b3(t)x, 0 < t < T,

x(0) = 0, x(T ) = 0,
,

{
D
q(t)
0+ x(t) = b2(t)xµ, 0 < t < T,

x(0) = 0, x(T ) = 0,

have one solution u1(t), u2(t) and u3(t), respectively. Based on the linearity

of variable order fractional derivative D
q(t)
0+ , we obtain that the function u(t) =

u1(t) + u2(t) + u3(t) is one solution of the problem (22). J

4. Some examples

In this section, we provide several examples to demonstrate the utility of our
results.

Example 4. Let us consider the following linear boundary value problem{
D
q(t)
0+

x(t) = t−0.4, 0 < t < 3,

u(0) = 0, u(3) = 0,
(23)

where

q(t) =


1.2, 0 ≤ t ≤ 1,

1.5, 1 < t ≤ 2,

1.8, 2 < t ≤ 3.

We see that q(t) satisfies condition (H1); t0.5f(t, x) = t0.1 : [0, 3] × R → R is
continuous. Moreover, max0≤t≤3 t

0.5f(t, x) = max0≤t≤3 t
0.1 = 30.1, thus we can

take suitable constants to verify f(t, x) = t−0.4 satisfies conditions (H2) − (H5).
Then Theorem 1 or Theorem 2 or Theorem 3 assures problem (23) has a solution.

In fact, by the above arguments, we obtain that the equation of (23) can be
divided into three expressions as follows:

D1.2
0+x(t) = t−0.4, 0 < t ≤ 1, (24)
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d2

dt2

∫ t

0

(t− s)−0.5

Γ(0.5)
x(s)ds = t−0.4, 1 < t ≤ 2, (25)

d2

dt2

∫ t

0

(t− s)−0.8

Γ(0.2)
x(s)ds = t−0.4, 2 < t ≤ 3. (26)

By [21], we can easily obtain that the problems{
D1.2

0+x(t) = t−0.4, 0 < t ≤ 1,

x(0) = 0, x(1) = 0{
D1.5

0+x(t) = d2

dt2

∫ t
0

(t−s)−0.5

Γ(0.5) x(s)ds = t−0.4, 0 < t < 2,

x(0) = 0, x(2) = 0{
D1.8

0+x(t) = d2

dt2

∫ t
0

(t−s)−0.8

Γ(0.2) x(s)ds = t−0.4, 0 < t < 3,

x(0) = 0, x(3) = 0

have, respectively, the following solutions

x1(t) =
Γ(0.6)

Γ(1.8)

(
t0.8 − t0.2

)
∈ C[0, 1];

x2(t) =
Γ(0.6)

Γ(2.1)
t1.1 − Γ(0.6)20.6

Γ(2.1)
t0.5 ∈ C[0, 2];

x3(t) =
Γ(0.6)

Γ(2.4)
t1.4 − Γ(0.6)30.6

Γ(2.4)
t0.8 ∈ C[0, 3].

By calculation we obtain that x1(t), x2(t) and x3(t) are the solutions of (24),
(25) and (26), respectively. As a result, problem (23) has a solution.

To facilitate the intuitionistic descriptions of xi(t), i = 1, 2, 3, we give their
function images. The blue curve is x1’s image; the black curve is x2’s image and
the red curve is x3’s image.
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Example 5. Let us consider the following nonlinear boundary value problemDq(t)
0+

x(t) = t−0.3 |x|
1
3

1+x2
, 0 < t < 2,

u(0) = 0, u(2) = 0,
(27)

where

q(t) =

{
1.5, 0 ≤ t ≤ 1,

1.7, 1 < t ≤ 2.

We see that q(t) satisfies condition (H1); t0.5f(t, x) = t0.2 |x|
1
3

1+x2
: [0, 2] × R → R

is continuous. Moreover, we have

max
0≤t≤2

t0.5|f(t, x)| = max
0≤t≤2

t0.2
|x|

1
3

1 + x2
≤ 20.2|x|

1
3 .

Let r = 0.5, c1 = 1, c2 = 20.2 and γ = 1
3 . We can verify that f(t, x) = t0.2 |x|

1
3

1+x2

satisfies condition (H2). The assumption (H3) of Theorem 1 is also satisfied.
This suggests that the problem (27) has a solution by virtue of Theorem 1.
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