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On the Fundamental Theorem of Algebra and Its
Equivalence to the Frobenius Theorem on Division
Algebras
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Abstract. In this article we give a new proof of the Fundamental Theorem of Algebra.
Our proof is algebraic. We simplify the known proof of the Fundamental Theorem
considering special case of polynomials of odd degree with real coefficients. This case
allows us to apply the method of mathematical induction to get the proof in general case
without using infiniteness of the field.
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1. Introduction

Formulation of the Fundamental Theorem of Algebra (FTA) was given by A.
Girard (in 1617) as a conjecture: an algebraic equation of degree n has n complex
roots. But first complete and strict proof was given by J. Argand in 1814. In 1816
C. Gauss had published a new complete proof. These were great development
of algebraic and analytic methods. Later, FTA has been proved by many other
mathematicians. Today, the number of known proofs of FTA is very large ([1-2]).
Some of these proofs are based on the properties of analytic functions. Several
proofs using projective spaces can be found in [2].

In [3], FTA was proved for ordered fields. In that proof essential role was
played by the assumption that the main field is infinite. In this paper we give a
new proof for which this assumption isn’t made.

One of the interesting questions on this direction is a construction of algebraic
proof without using topological or geometric ideas. So far none of the methods
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for proving FTA is purely algebraic (see [4-6]). Our proof is also algebraic in
which we use, as many other proofs, the fact that the algebraic equation of odd
degree with real coefficients has at least one real root. This is due to the fact
that the field of real numbers is a complete field of strict linear order. This is a
unique argument related to the topology of real axes. Using special construction
allows us to avoid assumption on infiniteness of the field. By this reason this
method can be used in the case of finite fields. Another basic argument consisted
in the existence of a square root of negative real numbers in the field of complex
numbers.

In [7], G. Frobenius had proved the theorem on division associative algebras.
He proved that there exists only 3 associative division algebras over the field of
real numbers. Proof of this deep result is based on FTA (see [6]). There is close
connection between these two results, which was not observed in the literature. In
this paper we show that the Frobenius theorem on division algebras is equivalent
to the Fundamental Theorem of Algebra.

2. Auxiliary lemmas

Our considerations for the questions about extensions of the field of real num-
bers are based on some important notions of the theory of polynomials over the
field of real numbers.

Definition 1. Let f(x) ∈ K[x] be a polynomial. We call this polynomial irre-
ducible if it can’t be represented as a product of two polynomials of positive degree
such as

f(x) = g(x)h(x); g(x), h(x) ∈ K[x].

Definition 2. Let α be an algebraic element over the field K. Unitary polynomial
f(x) ∈ K[x] is called a minimal polynomial if f(x) is a polynomial of least degree
such that f(α) = 0.

The basic properties of irreducible and minimal polynomials are given below.

Lemma 1. Let f1(x), f2(x) ∈ K[x] be two unitary irreducible polynomials. Then,
f1(x) = f2(x), or (f1(x), f2(x)) = 1.

Lemma 2. Let α be an algebraic element over the field K with minimal polyno-

mial f(x) ∈ K[x]. If g(x) ∈ K[x] is a polynomial with the root α, then g(x)
...f(x).

Lemma 3. Let f1(x), f2(x) ∈ K[x] be two different irreducible polynomials. If

f(x)
...f1(x) and f(x)

...f2(x), then

f(x)
...f1(x)f2(x).
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We shall use some general results known from the theory of algebraic ex-
tensions. Suppose we are given some algebraic extension L/K. We shall call
the extension L a splitting field for the polynomial f(x) ∈ K[x] if all roots of
this polynomial belong to L. It is known that every polynomial has a splitting
field (see [2, p.193]). Note that every splitting field of the polynomial of degree 2
x2+a1x+a2 ∈ R[x], with negative discriminant, contains as a subfield (coincides
with) the field of complex numbers.

Lemma 4. Let α be an algebraic element over the field K, and f(x) ∈ K[x] be
its minimal polynomial. Then:

1) the polynomial f(x) is irreducible;
2) if g(x) is an irreducible unitary polynomial and has a root α, then g(x) is

a minimal polynomial for α;
3) the minimal polynomial is unique.

Lemma 5. If a polynomial f(x) ∈ R[x] has an odd degree, then this polynomial
has a real root.

This result is based on the property of continuous functions. If the polynomial
has an odd degree, then for sufficiently great positive a at the points −a and a
this polynomial takes values with different signs. As a consequence of continuity,
f(x) vanishes at some real c,−a < c < a.

For our considerations it is necessary to state one result from the theory of
symmetric polynomials.

Lemma 6. Let g(y1, y2, ..., yn) ∈ K[y1, y2, ..., yn] be a symmetric polynomial over
the field K, and α1, α2, ..., αn be the roots of the polynomial f(x) ∈ K[X]. Then
g(α1, α2, ..., αn) ∈ K.

The proofs of Lemmas 4-6 can be found in [5-6].

Lemma 7. If α 6= 0 is a complex number, then
√
α has two complex values.

Lemma 8. Let the condition f(x) = f(−x) be satisfied for the polynomial f(x) ∈
K[x]. Then one can find a polynomial g(x) ∈ K[x] such that f(x) = g(x2).

Proof. Let
f(x) = a0 + a1x+ · · ·+ anx

n.

Then
f(−x) = a0 − a1x+ · · ·+ (−1)nanx

n,

and by the condition of the lemma

f(x) = (f(x) + f(−x))/2 = a0 + a2x
2 + · · ·+ a2kx

2k + · · · .

So, at the right-hand side of this equality we see some polynomial of x2. J
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3. Fundamental Theorem of Algebra

Theorem 1. (FTA) Every polynomial of positive degree with complex coefficients
has complex roots only.

Proof. We shall prove this theorem by induction with respect to the degree of
the polynomial. It is clear that the theorem is valid for the polynomials of first
degree. Suppose that the statement of the theorem holds for all polynomials of
degree ≤ n− 1. Prove now FTA for the polynomials of degree n.

Let f(x) ∈ C[x] be some polynomial with complex coefficients, and

deg f(x) = n = 2kr,

where k ≥ 0, r ∈ N, r 6
...2. We shall apply the method of induction with respect

to k for reducing the case deg f(x) = n to the cases of less degree.
1) Consider the case k = 0. If the polynomial has an odd degree, then we put

g(x) = f(x)f̄(x),

f(x) = a0 + a1x+ · · ·+ anx
n,

with the coefficients a0, a1, ..., an being complex numbers, and

f̄(x) = ā0 + ā1x+ · · ·+ ānx
n.

Then,
g(x) = f(x)f̄(x) = c0 + c1x+ · · ·+ c2nx

2n,

and
cm = a0ām + a1ām−1 + · · ·+ amā0, 0 ≤ m ≤ 2n,

moreover, we put am = 0 when m > n. It is clear that cm = c̄m. So, the
polynomial g(x) is a polynomial with real coefficients of degree 2n, and n is an
odd number.

Let’s denote by P the splitting field of considered polynomials. Suppose that
in this field g(x) has zeroes α1, ..., α2n. Consider the sums αij = αi + αj , i >
j,where i, j = 1, ..., 2n. The number of these sums is equal to the odd number

1 + · · ·+ 2n− 1 = 2n(2n− 1)/2 = n(2n− 1).

Construct a new polynomial

h(x) =
∏
i>j

(x− αij)
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of degree d = n(2n − 1). If we permute the roots α1, ..., α2n, then we get the
polynomial h(x) again, because after permutation the factors of h(x) can change
their orders only. So, the coefficients of this polynomial are symmetric polynomi-
als of roots. By Lemma 6, the coefficients of the polynomial h(x) belong to the
main field, i.e. they are real numbers. Therefore, h(x) has a real root 2c ∈ R.
Then, for some roots α and β of g(x) we have α + β = 2c ∈ R. Then we have
α− c = −(β − c). By Taylor’s formula

g(x) = g(c) + g′(c)(x− c) + · · ·+ 1

(2n)!
g(2n)(c)(x− c)2n = φ(y),

where we have denoted y = x − c. If we write θ1 = α − c, θ2 = β − c, then we
have θ1 = −θ2. Denote by ψ(y) ∈ R[y] the minimal polynomial for the root θ1.
One of the numbers θ1 + c, θ2 + c, say θ1 + c, is a root of the polynomial f(x)
(or the polynomial f̄(x)) with complex coefficients. Then θ1 will be a root of the
polynomial

f(x+ c) = f(c) + f ′(c)x+ · · ·+ 1

n!
f (n)(c)xn = τ(x).

Then τ(x) is divisible by ψ(x) ∈ R[x]. If degψ(x) < deg f(x), then by an induc-
tive assumption all of the roots of polynomial τ(x) must be complex numbers.
Then the same statement is valid for the roots of the polynomialf(x).

Prove that the case degψ(x) = deg f(x) is impossible. In fact, if degψ(x) =
deg f(x), then the polynomials τ(x) and ψ(x) are associated. Since the polyno-
mial ψ(−y) is irreducible, then ψ(−y) will be a minimal polynomial for θ2 by
virtue of Lemma 4. According to Lemma 1, we have either ψ(y) = ψ(−y) or
(ψ(y), ψ(−y)) = 1. Consider now polynomial γ(y) = ψ(y) = ψ(−y) in the first
case, and γ(y) = ψ(y)ψ(−y) in the second case. Then, the polynomial γ(y) is an
even function, i.e. γ(y) = λ(y2), by Lemma 8. In the first case this is impossible,
since the polynomial τ(x) has odd degree. Then, we have (ψ(y), ψ(−y)) = 1
and ψ(−x) must be associated with f̄(x). So, g(x) is associated with the poly-
nomial γ(x) = λ(x2). Now we note that the polynomial λ(y) has odd degree
and real coefficients. Then this polynomial has a real root δ which must be root
of the irreducible polynomial f(x) (or f̄(x)), which is impossible. So, the case
degψ(x) = deg f(x) is impossible, and the statement of the theorem is true for
the case k = 0.

2) Assume that every polynomial f(x) ∈ C[x] with deg f(x) = n = 2kr and

k ≥ 1 has complex zeros only for all odd numbers r ∈ N, r 6
...2. Prove that the

same statement is valid for polynomials f(x) ∈ C[x] with deg f(x) = n = 2k+1r,

where r ∈ N, r 6
...2. Take some splitting field P where this polynomial has roots
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α1, ..., αn. Construct the sums

αij = αi + αj , i > j,

where i, j = 1, ..., n. The number of these sums is equal to

1 + · · ·+ n− 1 = n(n− 1)/2 = 2k(2k+1 − 1).

Consider a new polynomial

h(x) =
∏
i>j

(x− αij)

of degree d = 2k(2k+1 − 1). As we see, the number 2k+1 − 1 = m is odd. It is
clear that if we permute the roots α1, ..., αn, then we get the polynomial h(x)
again. So, the coefficients of this polynomial are symmetric polynomials of roots.
By Lemma 6, the coefficients of the polynomial h(x) belong to the main field,
i.e. they are complex numbers. Then, by inductive assumption, the constructed
polynomial has a complex root, say 2c, i. e. for some roots α and β of f(x) we
have α+ β = 2c ∈ C. Then α− c = −(β − c). By Taylor’s formula

f(x) = f(c) + f ′(c)(x− c) + · · ·+ 1

n!
f (n)(c)(x− c)n = φ(y), (1)

in which we have assumed y = x− c. If we write θ1 = α− c, θ2 = β − c, then we
have θ1 = −θ2. The polynomial φ(y) has complex coefficients, and roots θ1, θ2,
as seen from the expansion above. Denote by ψ(y) ∈ C[y] a minimal polynomial
for the root θ1. We can apply the reasoning above. Since the polynomial ψ(−y)
is irreducible, then ψ(−y) will be a minimal polynomial for θ2 in accordance
with Lemma 4. Then ψ(y) = ψ(−y) or (ψ(y), ψ(−y)) = 1. Consider now the
polynomial γ(y) = ψ(y) = ψ(−y) in the first case, and γ(y) = ψ(y)ψ(−y) in
the second case. In both cases the polynomial γ(y) is an even function, i.e.
ψ(y) = λ(y2).

In the first case we have φ(y)
...ψ(y). Then, φ(y) = ψ(y)σ(y), with the polyno-

mials ψ(y), σ(y) of positive degree. So, both of these polynomials have a degree
≤ n−1 and have complex roots only, in accordance with an inductive assumption.
Therefore, in this case the theorem is valid. If the polynomials ψ(y) and φ(y) are
associated, then φ(y) = cλ(y2), and the polynomial λ(y) has degree n/2. So, this
polynomial has complex roots only. Then, φ(y), accordance with Lemma 7, also
has complex roots only.

Consider the second case γ(y) = ψ(y)ψ(−y). From Lemma 3 it follows that
the polynomial φ(y) is divisible by γ(y). In this case the polynomials ψ(y), ψ(−y)
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as well as the polynomial φ(y) have complex roots only by virtue of inductive
assumption.

The FTA is now proved. J

4. Equivalence of FTA to the Frobenius Theorem

Consider some field P , and let V denote a linear associative algebra over this
field. If for any elements a, b ∈ V the equations ax = b and xa = b have solutions
when a 6= 0, then this algebra is called algebra with division. The dimension of
the linear space V is called a rank of the algebra. The field of complex numbers
is a division algebra of rank 2.

Now we recall the Frobenius theorem.
Theorem (Frobenius). There are only three associative division algebras over
the field of real numbers: the fields of real and complex numbers, and the quater-
nion algebra.

The proof of this theorem is based on some results on associative division
algebras which have analogs in the theory of fields extensions.

Lemma 9. Let V be a division algebra of rank n over the field of real numbers
R. Then:

1) every element α ∈ V is a root of a polynomial of first or second degree with
real coefficients;

2) if α ∈ V \R, then one can find real numbers a and b such that (aα+b)2 = −1
with a 6= 0;

3) if n = 2, then V ∼= C.

Proof of this lemma is a consequence of FTA (see [8]).

Lemma 10. There is no associative division algebra of rank 3 over the field of
real numbers.

This lemma can be proved by the methods of the theory of finite extensions
(see [8]). If we suppose an existence of such an algebra, then this algebra must
contain linearly independent elements 1, α, β. Then division algebra containing
the elements 1, α will be an extension isomorphic to the field of complex numbers.
Now we can consider the division algebra given above as an analog of extension of
the field of complex numbers. In accordance with Lemma 9, we then could have
an extension of rank 2, because the element β doesn’t belong to the constructed
algebra of dimension 2. In the theory of algebraic extensions there is a statement:

Let E and F be two finite extensions of the field K. If the field F is of degree
m over the field E, and E is an extension of degree n over the field K, then the
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field F is of degree mn over the field K. Moreover, if the set {x1, ..., xm} is a
base of F over E, and {y1, ..., yn} is a base of E over the field K, then the set
{xiyj}1≤i,j≤j will be a base for F over the field K.

These observations allow to conjecture that the rank of the division algebra
containing linearly independent elements 1, α, β must have at least rank 4. This
fact was established in a similar way (see [8]).

As a consequence of the proved results we have

Lemma 11. Let V be an associative division algebra of the rank n ≥ 3. Then
for every pair of elements α, β satisfying conditions α2 = −1, β2 = −1 we have
αβ = −βα.

Frobenius theorem is a consequence of the above lemmas ([6,8]).
Our goal is to prove equivalence of this theorem to FTA.

Theorem 2. FTA is equivalent to the Frobenius Theorem.

Proof. It is well known that Frobenius Theorem is possible to deduce from
FTA. To complete the proof of Theorem 2, we must prove an implication Frobe-
nius Theorem ⇒ FTA. Assume Frobenius Theorem is true, i.e. there are only
three associative division algebras over the field of real numbers. It is well known
that for every polynomial f(x) ∈ C[x] there exists a polynomial g(x) ∈ R[x] such
that every root of given polynomial or its conjugate is a root of g(x). On other
hand, there exist an extension L of the field of real numbers containing all roots
of the polynomial g(x). It is clear that the field L is a commutative division alge-
bra of finite rank over the field of real numbers. By the Frobenius Theorem, this
algebra can be isomorphic, in accordance with commutativity, to the algebras R
or C only, because the quaternion algebra is not commutative. So, all roots of
given polynomial belong to the field L being isomorphic to C. J
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