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A New Approach for Unique Restoration of a
Time-Dependent Matrix Potential in a Hyperbolic
Scattering Problem on the Semi-Axis
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Abstract. This paper considers the inverse scattering problem on the semi-axis for the
matrix hyperbolic system with a special structure of matrix potential. The possible
relationship between the matrix scattering operators for the first order systems with
unshifted and space-shifted potentials is given. By using this relationship, the new ap-
proach for unique restoration of this potential from the matrix scattering operators on
the semi-axis is given.
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1. Introduction

First order hyperbolic systems of equations describe many physical processes
associated with wave propagation. For instance, there exist systems of equa-
tions for acoustics, electromagnetic oscillations and those of dynamic equations
of theory of elasticity. One velocity transport equation is reduced to a first order
hyperbolic system under the assumption that the velocity accepts the finite fixed
number of directions and the transport process is plane symmetric [19].

The inverse problems for the first order hyperbolic system play important
role in different areas of applied mathematics and mathematical physics. The
inverse problem for the first order hyperbolic system is a problem of finding the
coefficients from the some known functionals of its solutions. Several results on
the inverse problems for the first order hyperbolic system which are observed in
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seismology, geophysics and gravitation and magnitude detection are considered
in [15] and in scattering problems for the wave propagation in [10].

The traditional model for wave propagation is the wave equation with coeffi-
cients that are independent of time [16]. For the problems of wave propagation in
the non-stationary medium, the coefficients of the relevant PDEs vary not only in
space, but also in time. The model problems, where time-dependent coefficients
occur, can be found in [1, 2, 20]. There are many papers dealing with inverse
problems in wave propagation, but only a few of them deal with the solution of
the inverse problem for a non-stationary medium. The inverse scattering prob-
lems (ISPs) for time dependent potentials have been studied by L. P. Nizhnik
([10]). The ISP for the multidimensional wave equations with time-dependent
potential was also considered in [17]. In [6, 14], the time-dependent potentials
are determined by Dirichlet to Neumann mappings for the hyperbolic type equa-
tions.

The literature on the inverse problems for two component hyperbolic system
is vast, see [4, 5, 13, 21, 22], to name just a few. In contrast to this case, the
inverse problems for hyperbolic systems with more than two equations are not
so many. It is important to notice the reference [3] which deals with the inverse
mixed problem for the first order hyperbolic system and the references [10, 18]
and [8, 9, 11] which are dedicated to ISP for the first order hyperbolic system in
wholeaxis and in semi-axis, respectively.

The ISP on wholeaxis for the first order hyperbolic system is solved in [9]
by the Gelfand-Levitan-Marchenko equation and the scattering data for the ISP
is given in [12]. The Riemann-Hilbert approach to the ISP for the first order
hyperbolic system on whole-axis is studied in [18].

This paper is dedicated to the ISP for the firstorder M-canonical hyperbolic
system of size 2n on the semi-axis, under a general boundary condition. In a
standard manner, the Volterra-type integral representation of the solution is in-
troduced, some properties of the scattering matrix are described and then the
problem of reconstructing the potential from the scattering operator is discussed.
The potential is determined uniquely by two scattering operators for the consid-
ered system subject to two different boundary conditions.

We consider the direct determination of coefficients from the scattering op-
erator on the semi-axis. The determination is realized in the following way: we
show that the matrix scattering operator admits two-sided factorization by using
transformation operator at infinity. Then we consider the scattering problem for
the space-shifted system and we show the relationship between scattering oper-
ator of the original system and the space-shifted system. By the help of this
relationship we can uniquely recover the potential for every x > 0 from the scat-
tering operator of original system. The alternative way to show the uniqueness
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of the solution of ISP is considered in [9] by converting the problem on semi-axis
to the problem on wholeaxis. This way allows us to give the algorithm of the
solution and the description of scattering data of ISP on the semi-axis in terms
of scattering operator on the wholeaxis, but not in the terms of operators on the
semi-axis.

The rest of the paper is organized as follows. In Section 2, the formulation
of the ISP for the M-canonical system is given and some necessary results on
transformation operator are transferred from [9]. In Section 3, the relationship
between scattering operators of systems with unshifted and space-shifted poten-
tials is presented and the uniqueness of the solution of ISP is proved.

2. Scattering problem on the semi-axis

We consider the scattering problem for the system of the following form on
the half-plane R+ × R : in the following form

σ∂tψ − ∂xψ = Q(x, t)ψ, (x, t) ∈ R+ × R, (1)

where σ =

[
σ1 0n
0n σ2

]
is a constant matrix with the block diagonal matrices

σ1 = diag{ξ1, ..., ξn}, σ1 = diag{ξn+1, ..., ξ2n} with ξ1 > ... > ξn > 0 > ξn+1 >
... > ξ2n.

Definition 1. We will call the system (1) an M-canonical system, if it has ma-

trix potential Q(x, t) =

[
q11(x, t) q12(x, t)
q21(x, t) q22(x, t)

]
where q11 and Pq22P are strictly

lower triangular, q12P and Pq21 are lower triangular n × n matrix blocks, P is
a permutation matrix with [P ]j,n+1−j = 1, j = 1, ..., n, [P ]jk denotes the (j, k)
element of matrix P .

Let us consider matrix blocks qij(x, t), i, j = 1, 2 whose measurable complex-
valued entries belong to the Schwartz class.

The scattering problem for the M-canonical system (1) on the semi-axis con-
sists of finding the solution of M-canonical system (1) with the boundary condi-
tion at x = 0

ψ2(0, t) = Hψ1(0, t), detH 6= 0, (2)

and the asymptotic condition

ψ1(x, t) = =σ1xa(t) + o(1), x→ +∞, (3)
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where =σ1x = diag(Tξ1x, ..., Tξnx), =σ2x = diag(Tξn+1x, ..., Tξ2nx) are shift oper-

ators such that Tξix = h(t + ξix), i = 1, ..., 2n and ψ =

[
ψ1

ψ2

]
with the n-

dimensional column vectors ψ1 and ψ2. H is the constant transmission matrix of
order n with detH 6= 0 and the vector function a(t) denotes the profile of incident
waves. We will denote by Cb(R,Cn) the space of Cn-valued bounded continuous
functions on R.

By combining Theorem 1, Lemma 1 and 2 of [9], we have the following lemma.

Lemma 1. For an arbitrary incident wave vector a(t) ∈ Cb(R,Cn) there exists
a unique bounded continuous solution of the scattering problem and the second
component of the solution satisfies the asymptotic relation

ψ2(x, t) = =σ2xb(t) + o(1), x→ +∞, (4)

where b(t) ∈ Cb(R,Cn) defines the profile of the scattered waves. Moreover, the
following additional properties of the solution of the scattering problem hold for
detH 6= 0 :

1) If a(s) = 0 for s ≤ λ, then for t + ξ1x ≤ λ, the solution of the scattering
problem is equal to zero, i.e. ψ1(x, t) = ψ2(x, t) = 0.

2) If b(s) = 0 for s ≥ λ, then for t + ξ2nx ≥ λ, the solution of the scattering
problem is equal to zero, i.e. ψ1(x, t) = ψ2(x, t) = 0.

In the view of Lemma 1, for every incident vector function a(t) ∈ Cb(R,Cn),
when the M-canonical system (1) satisfies conditions (2) and (3), there exists a

unique solution ψ =

[
ψ1(x, t)
ψ2(x, t)

]
. For this solution there exist scattered waves

b(t) ∈ Cb(R,Cn) according to (4). By comparing the incident and scattered
waves, the scattering operator SH is defined by

b = SHHa. (5)

Single scattering operator for the M -canonical system (1) on the semi-axis is
not sufficient to uniquely determine the coefficients of the M -canonical system
(1) by the scattering operator SH . This was shown in [9].

Consider two scattering problems on the semi-axis for the M -canonical system
(1).

First scattering problem: find a solution ψ1
1(x, t) and ψ1

2 of the M -canonical
system (1) such that the asymptotic relation

ψ1
1(x, t) = =σ1xa(t) + o(1), x→ +∞,
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holds and the boundary condition

ψ1
2(0, t) = H1ψ

1
1(0, t), detH1 6= 0, (6)

is satisfied.
Second scattering problem: find a solution ψ2

1(x, t) and ψ2
2 of the M -canonical

system (1) such that the asymptotic relation

ψ2
1(x, t) = =σ1xa(t) + o(1), x→ +∞,

holds and the boundary condition

ψ2
2(0, t) = H2ψ

2
1(0, t) detH2 6= 0, (7)

is satisfied.
We are going to investigate the solution of the inverse scattering problem con-

sidering the first and second scattering problems together under the assumption

det(H1 −H2) 6= 0.

According to Lemma 1, for arbitrary a(t) ∈ Cb(R,Cn) the first and second
scattering problems have unique bounded solution. Moreover, these solutions
satisfy the asymptotic relations

ψk2 (x, t) = =σ2xbk(t) + o(1), x→ +∞, k = 1, 2,

where bk(t) ∈ Cb(R,Cn) defines the profile of the scattered waves.
The scattering operators corresponding to the first and second scattering

problems are denoted by SHk
:

SHk
: Hka(t)→ bk, k = 1, 2. (8)

In solving ISPs, the Volterra type integral representation of the solution plays
an important role. Such representation can be derived from transformation op-
erator as x→ +∞.

Lemma 2. (Theorem 2, [9]) For any a(t), b(t), (−∞ < t < +∞), there ex-
ists a unique solution of the M -canonical system (1). This solution admits the
representation

ψ1(x, t) = [In + A11−(x)]=σ1xa(t) + A12+(x)=σ2xb(t),

ψ2(x, t) = A21−(x)=σ1xa(t) + [In + A22+(x)]=σ2xb(t),
(9)
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where Aij−(x)f(t) =
+∞∫
t

Aij (x, t, s) f(s)ds, Aij+(x)f(t) =
t∫
−∞

Aij (x, t, s) f(s)ds.

The kernels Aij (x, t, s) (i, j = 1, 2) are determined uniquely by the coefficients
of the M-canonical system (1) and for the fixed x these kernels are the Hilbert-
Schmidt kernels.

In addition, these kernels are related to the potentials by the formulas

[A11(x, t, t)]i,j =


1

ξj−ξi [q11]i,j(x, t), i 6= j,

1
ξi−ξ2n−j+1

+∞∫
x

{
[q12]i,n−j+1 [q21]n−j+1,i

}
(s, t+ ξi(x− s))ds, i = j,

[A12(x, t, t)]i,j = − 1

ξn+j − ξi
[q12]i,j(x, t), [A21(x, t, t)]i,j =

1

ξj − ξn+i
[q21]i,j(x, t),

(10)

[A22(x, t, t)]i,j =

=


− 1
ξn+j−ξn+i

[q22]i,j(x, t), i 6= j,

− 1
ξn+i−ξn−j+1

+∞∫
x

{
[q21]i,n−j+1 [q12]n−j+1,i

}
(s, t+ ξn+i(x− s))ds, i = j,

i, j = 1, ..., r

Using the representation (9) and the boundary conditions (6) and (7) we obtain

bk(t) = (In + A22+ −HkA12+)−1(In +HkA11−H
−1
k −A21−H

−1
k )Hka(t), (11)

where Aij− = Aij−(0), Aij+ = Aij+(0), i, j = 1, 2.

By comparing the formula (11) to the definition of the scattering operator,
we obtain the following Volterra structure of the matrix scattering operators for
the first and second scattering problems on the semi-axis:

SHk
= (In + A22+ −HkA12+)−1(n+HkA11−H

−1
k −A21−H

−1
k ). (12)

The scattering operators SHk
(k = 1, 2) admit two-sided factorization. The

formula (12) means that the matrix operator SHk
admits right factorization.

Moreover, this operator is given by the structure SHk
= In + Fk, where Fn is a

matrix Hilbert-Schmidt operator. From (12) we also obtain the inversion of the
operator SHk

. In addition, this operator is given by the structure S−1Hk
= In+Gk,

where Gk is a matrix Hilbert-Schmidt operator. Let us denote the kernels of the
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operators Fk and Gk by Fk(t, s), Gk(t, s). The left factorization of SHk
(k = 1, 2)

is proved in [9] by using

A11−+A12+FkHk= Ck+−A12+Hk,
FkHk+A12−+A22+FkHk= Dk+−A22+Hk,

A12++H−1k Gk+A11−H
−1
k Gk= Ck−−A11−H

−1
k ,

A22++A21−H
−1
k Gk= Dk− −A21−H

−1
k ,

(13)

and FkGk= GkFk= −Fk−Gk where Ck+, Dk+, Ck−, Dk−, (k = 1, 2) are
Hilbert-Schmidt Volterra operators with the kernels

Ck+(t, s) =
t∫
−∞

A12(0, t, τ)Fk(τ, s)Hkdτ +A12(0, t, s)Hk, s ≤ t,

Dk+(t, s) = Fk(t, s)Hk +
t∫
−∞

A22(0, t, τ)Fk(τ, s)Hkdτ +A22(0, t, s)Hk, s ≤ t,

Ck−(t, s) = H−1k Gk(t, s) +
+∞∫
t

A11(0, t, τ)H−1k Gk(τ, s)dτ +A11(0, t, s)H
−1
k , s ≥ t,

Dk−(t, s) =
+∞∫
t

A21(0, t, τ)H−1k Gk(τ, s)dτ +A21(0, t, s)H
−1
k , s ≥ t.

3. Uniqueness and algorithm of the solution of ISP on the

semi-axis

The problem of finding matrix potential Q from the known scattering matrices
SHk

, k = 1, 2 is called the ISP of the M-canonical system (1), (2). The following
result is about the M. G. Krein factorization of the Hilbert-Schmidt integral
operators of the second kind ([7, 10]) and it will be firmly used below.

Lemma 3. ([10], Theorem 4.2.2) Let F be a Hilbert-Schmidt integral operator
in L2(R,Cn) and S = In + F. If the operator S admits right factorization as
S = (In −A+)−1(In −A−)−1, then for any δ there exists an integral operator

Γδ = (In + FEδ)
−1F such that operators A+ and A− are uniquely determined

with respect to S by the formulas

A(t, τ) = Γt(t, τ), t ≥ τ,
A(t, τ) = Γτ (t, τ), t ≤ τ,

where A(t, τ) t ≥ τ and A(t, τ), t ≤ τ are the kernels of the operators A+ and
A−, respectively, Γδ(t, τ) is the kernel of the operator Γδ and Eδ is a projection
operator for t < δ.
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Lemma 4. ([10], Theorem 4.3.3) Let F be a Hilbert-Schmidt integral operator in
L2(R,Cn) and S = In + F. If this operator admits two-sided factorization, then
it is invertible, S−1= In + G, and it can be uniquely determined by F− and G+

(or F+ and G−), where F− and G+ are negative and positive parts of F and G,
respectively:

F−h(t) =

∫ +∞

t
F(t, τ)h(τ)dτ, G+−h(t) =

∫ t

−∞
G(t, τ)h(τ)dτ.

Using Lemma 3, from the formulas (10) and (12) we can determine the value
of the potential for x = 0 from the scattering operator (the uniqueness of this
determination will be proved in Theorem 2). To find the potential for any values
x0 ≥ 0 it is natural to consider the scattering problem for the system (1) with
the shifted potential

Q(x+ x0, t) =

[
q11(x+ x0, t) q12(x+ x0, t)
q21(x+ x0, t) q22(x+ x0, t)

]
, x0 > 0. (14)

Denote by SHk
(x0) the scattering operators of the scattering problem on the

semi-axis with potential (14). Based on Lemma 2, we conclude that for any
x0 ≥ 0 the operators SHk

admit the right factorization

SHk
(x0) =

= (In+A22+(x0)−HkA12+(x0))
−1(In+HkA11−(x0)H

−1
k −A21−(x0)H

−1
k ), k = 1, 2.

(15)
Moreover, the operators

Fk(x0) = SHk
(x0)− In, Gk(x0) = S−1Hk

(x0)− In

are Hilbert-Schmidt integral operators with the kernels denoted by Fk(x0, t, s),
G(x0, t, s). It is easy to see that, for x0 = 0, Fk(0, t, s) = Fk(t, s), G(0, t, s) =
G(t, s).

The following theorem gives the unique solvability of the ISP for the problem
(1)-(2).

Theorem 1. Let SHk
= In − Fk, k = 1, 2 be scattering operators for the M-

canonical system (1) with the boundary condition (2). The scattering operators
SHk

(x0) = In − Fk(x0), k = 1, 2 for the M -canonical system (1) with the shifted
potential (14) are related to scattering operators SHk

, k = 1, 2 as follows:

Fk(x0, t, s)− F̃k(x0, t, s) = 0, t ≤ s,
Gk(x0, t, s)− G̃k(x0, t, s) = 0, t ≥ s,

(16)
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where

F̃k(x0, t, s) = =σ2x0
[
n∑
i=1

Fk(t, s+ ξix0)H
i
k

]
H−1k , t ≤ s,

G̃k(x0, t, s) = Hk

[
n∑
i=1

(
H−1k

)i (=σ2x0GTk (t+ ξix0, s)
)T]

, t ≥ s,

and H i
k is the constant matrix with ith column equal to ith column of Hk and the

rest part equal to zero, and
(
H−1k

)i
is the constant matrix with ith raw equal to

ith raw of H−1k and the rest part equal to zero.

Proof. From the definition of the scattering operator SHk
(k = 1, 2) it follows

that

bk(s) = (In + Fk)Hka(s) = Hka(s) +

+∞∫
−∞

Fk(s, τ)Hka(τ)dτ, (17)

a(s) = H−1k (In + Gk)b
k(s) = H−1k bk(s) +

+∞∫
−∞

H−1k Gk(s, τ)bk(τ)dτ. (18)

By taking into account (17), from the representation (9) for the first and second
scattering problems, we obtain that

ψk1 (x, t) = =σ1xa(t) +
+∞∫
t

A11(x, t, s)=σ1xa(s)ds+
t∫
−∞

A12(x, t, s)=σ2xHka(s)ds

+
t∫
−∞

A12(x, t, s)=σ2x

(
+∞∫
−∞

Fk(s, τ)Hka(τ)dτ

)
ds,

ψk2 (x, t) = =σ2xHka(t) +
+∞∫
−∞
=σ2xFk(t, s)Hka(s)ds

+
+∞∫
t

A21(x, t, s)=σ1xa(s)ds+
t∫
−∞

A22(x, t, s)=σ2xHka(s)ds

+
t∫
−∞

A22(x, t, s)=σ2x

(
+∞∫
−∞

Fk(s, τ)Hka(τ)dτ

)
ds, k = 1, 2.

If a1(s) = 0 for s ≤ λ, then by Lemma 1, ψk1 (x, t) = ψk2 (x, t) = 0, k = 1, 2, for
t+ ξ1x ≤ λ. Then we obtain that for x ≥ 0 and t+ ξ1x ≤ λ

0 =

+∞∫
λ

(=−σ1xAT11(x, t, s))Ta(s)ds+
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+

t∫
−∞

A12(x, t, s)=σ2x

 +∞∫
λ

Fk(s, τ)Hka(τ)dτ

 ds,

0 =

+∞∫
λ

=σ2xFk(t, τ)Hka(τ)dτ +

+∞∫
λ

(=−σ1xAT21(x, t, s))Ta(s)ds

+

t∫
−∞

A22(x, t, s)=σ2x

 +∞∫
λ

Fk(s, τ)Hka(τ)dτ

 ds,

where AT denotes the transpose of matrix A. Taking into account that the
function a1(s) (s ≥ λ) is arbitrary, it follows from the last equalities that, for
t+ ξ1x ≤ λ and s ≥ λ (i.e. t+ ξ1x ≤ s),

(=−σ1xAT11(x, t, s))T +
t∫
−∞

A12(x, t, τ)=σ2xFk(τ, s)Hkdτ = 0,

=σ2xFk(t, s)Hk + (=−σ1xAT21(x, t, s))T +
t∫
−∞

A22(x, t, τ)=σ2xFk(τ, s)Hkdτ = 0.

(19)
Similarly, due to Lemma 1, from (18) and (9) we obtain the following relations
between transformation operator and scattering operators for the first and second
scattering problems:

=σ1xH−1k Gk(t, s) + (=−σ2xAT12(x, t, s))T +
+∞∫
t

A11(x, t, τ)=σ1xH−1k Gk(τ, s)dτ = 0,

(=−σ2xAT22(x, t, s))T +
+∞∫
t

A21(x, t, τ)=σ1xH−1k Gk(τ, s)dτ = 0, t+ ξ2nx ≥ s.

(20)
From (19) by substraction we obtain for t ≤ s

HkA11(x0, t, s)H
−1
k −A21(x0, t, s)H

−1
k − F̃k(x0, t, s)

+
t∫
−∞

[HkA12(x0, t, τ)−A22(x0, t, τ)] F̃k(x0, t, τ)dτ = 0.
(21)

Considering for t ≥ s the left hand side of (21) as the kernel of some operator
Rk+(x0) and F̃k(x0, t, s) as the kernel of operator Fx0

k , we rewrite (21) in the
operator form:

HkA11−(x0)H
−1
k −A21−(x0)H

−1
k −[In + A22+(x0)−HkA12+(x0)] F

x0
k = Rk+(x0),

hence

Fk(x0)− Fx0
k = (In + A22+(x0)−HkA12+(x0))

−1(In + Rk+(x0))− In.
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Taking into account that the right hand side is Volterra operator, we obtain that
for t ≤ s

Fk(x0, t, s)− F̃k(x0, t, s) = 0, t ≤ s.

By analogy, the rest of (16) is proved by using (20). J

In this way, the algorithm of recovering of the potential Q(x, t) from the
scattering operators SHk

is as follows:

(1) construct the operator SHk
(x0), x0 > 0, by Lemma 4 and formula (16);

(2) find the factorization factors A22+(x0)−HkA12+(x0) andHkA11−(x0)H
−1
k −

A21−(x0)H
−1
k from (15), by Lemma 3;

(3) determine the matrix coefficients qij(x0, t), i, j = 1, 2 with respect to
kernels of the operators Aij+(x0) and Aij−(x0), i, j = 1, 2, by the formulas (10).

The uniqueness of this determination is proved by the following theorem.

Theorem 2. Let the coefficients of the M -canonical system (1) belong to Schwartz
class and SHk

, k = 1, 2 be the scattering operators for the M -canonical system
(1) on the half-plane, where the matrices H1 and H2 satisfy det(H1 −H2) 6= 0.
The coefficients of the M -canonical system (1) are uniquely determined by the
scattering operators SHk

, k = 1, 2.

Proof. Assume that there are two potentials Q(1) and Q(2). Since Aij+ and
Aij−, i, j = 1, 2, are determined uniquely by SHk

, k = 1, 2 (Theorem 4 [9]).

According to (10) we get [q
(1)
11 ]i,j(x, t) = [q

(2)
11 ]i,j(x, t), [q

(1)
22 ]i,j(x, t) = [q

(2)
22 ]i,j(x, t)

for i 6= j, and

[q
(1)
12 ]i,j(x, t) = [q

(2)
12 ]i,j(x, t), [q

(1)
21 ]i,j(x, t) = [q

(2)
21 ]i,j(x, t)

[
q
(1)
21 − q

(2)
21

]
n−j+1,i

(x, t) +
+∞∫
x

{[
q
(1)
12

]
i,n−j+1

[
q
(1)
21 − q

(2)
21

]
n−j+1,i

+
[
q
(1)
12 − q

(2)
12

]
i,n−j+1

[
q
(2)
21

]
n−j+1,i

}
(s, t+ ξi(x− s))ds = 0,

[
q
(1)
12 − q

(2)
12

]
n−j+1,i

(x, t) +
+∞∫
x

{[
q
(1)
21

]
i,n−j+1

[
q
(1)
12 − q

(2)
12

]
n−j+1,i

+
[
q
(1)
21 − q

(2)
21

]
i,n−j+1

[
q
(2)
12

]
n−j+1,i

}
(s, t+ ξn+i(x− s))ds = 0

for i = j. Let us denote Z12(x, t) = q
(1)
12 (x, t) − q(2)12 (x, t), Z21(x, t) = q

(1)
21 (x, t) −
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q
(2)
21 (x, t). Then the above formulas can be written in the following form:

[Z2(x, t)]ij (x, t) = 0, [Z3(x, t)]ij (x, t) = 0

[Z3(x, t)]n−j+1,i (x, t) +
+∞∫
x

{[
Q

(1)
2

]
i,n−j+1

[Z3(x, t)]n−j+1,i

+ [Z2(x, t)]i,n−j+1

[
Q

(2)
3

]
n−j+1,i

}
(s, t+ ξi(x− s))ds = 0,

[Z2(x, t)]n−j+1,i (x, t) +
+∞∫
x

{[
Q

(1)
3

]
i,n−j+1

[Z2(x, t)]n−j+1,i

+ [Z3(x, t)]i,n−j+1

[
Q

(2)
2

]
n−j+1,i

}
(s, t+ ξn+i(x− s))ds = 0.

(22)
The system (22) is the homogeneous system of Volterra integral equations with
respect to x. Since its coefficients belong to Schwartz class, it has only a trivial

solution (Z12(x, t) = Z21(x, t) = 0). Thus, q
(1)
12 (x, t) = q

(2)
12 (x, t), q

(1)
21 (x, t) =

q
(2)
21 (x, t). The theorem is proved. J

4. Conclusion

This paper is dedicated to the ISP for the first-order M -canonical hyperbolic
system of size 2n on the semi-axis, under a general boundary condition. In a
standard manner, the Volterra-type integral representation of the solution is in-
troduced, some of properties of the scattering operator are described and then
the problem of reconstructing the potential from the scattering operator is dis-
cussed. The main result (Theorem 2) claims that the potential is determined
uniquely by two scattering matrices for the considered system subject to two dif-
ferent boundary conditions, ψ2(0, t) = Hkψ1(0, t), detHk 6= 0, k = 1, 2, provided
that H1 −H2 is non-singular. Examples given in [9] show that (a) one scatter-
ing matrix is insufficient for unambiguous reconstruction and (b) the condition
det(H1 −H2) = 0 is crucial.

We also consider the direct determination of coefficients from the scattering
operator on the semi-axis. The determination is realized in the following way: we
show that the matrix scattering operator admits two-sided factorization by using
transformation operator at infinity. Then we consider the scattering problem for
the space-shifted system and we show the relationship between scattering oper-
ator of the original system and the space-shifted system (Theorem 1). By the
help of this relationship we can uniquely recover the potential for every x > 0
from the scattering operator of original system. The existing over-determination
in recovering of the potential will be relieved by the relations between the com-
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ponents of scattering operator, which suggests a line for further investigation.
The another way to show the uniqueness of the solution of ISP is presented in [9]
by converting the problem on semi-axis to the problem on wholeaxis. Since the
ISP on the wholeaxis has been sufficiently well studied (the uniqueness is shown,
the algorithm of the recovering of coefficients and the description of scattering
data are given) in [12, 23], the algorithm of the solution of ISP on the semi-axis
is naturally extended and the description of scattering data is given in terms of
matrix scattering operators on the wholeaxis.
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