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Direct and Inverse Problem for the Sturm–Liouville Op-
erator with Eigenparameter-Dependent Boundary Con-
ditions with Two Interior Discontinuities
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Abstract. In this paper, we study the Sturm–Liouville operator with two interior discontinuities
and with spectral parameter linearly contained in one of the boundary conditions. Spectral prop-
erties of the eigenvalues and norming constants of this operator are investigated. Moreover, the
Weyl solution and the Weyl function for this operator are defined. We prove uniqueness theorems
for the solution of the inverse problem of reconstruction of the operator from the Weyl function,
from the spectral data and from two spectra.
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1. Introduction

In this paper, we will study the discontinuous Sturm–Liouville boundary value problem
L consisting of the differential equation

`y := −y′′ + q(x)y = λy, x ∈ J := [0, ξ1) ∪ (ξ1, ξ2) ∪ (ξ2, π], (1.1)

with boundary conditions at x = 0 and x = π,

U(y) := y′(0)− hy(0) = 0, (1.2)

V (y) := (λ−H1)y′(π) + (λH −H2)y(π) = 0, (1.3)

and jump conditions at the points of discontinuities x = ξ1 and x = ξ2,

l1(y) := y(ξ1 + 0)− α1y(ξ1 − 0) = 0, (1.4)

l2(y) := y′(ξ1 + 0)− α−1
1 y′(ξ1 − 0)− α2y(ξ1 − 0) = 0, (1.5)

l3(y) := y(ξ2 + 0)− β1y(ξ2 − 0) = 0 (1.6)

l4(y) := y′(ξ2 + 0)− β−1
1 y′(ξ2 − 0)− β2y(ξ2 − 0) = 0, (1.7)
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where q(x) ∈ L2(0, π) is a real-valued function, λ ∈ C is a spectral parameter, h, H,
H1, H2, αi and βi (i = 1, 2) are real numbers; α1 > 0, |α1 − 1| + |α2| > 0, β1 > 0 and
|β1 − 1|+ |β2| > 0. We assume that ρ := HH1 −H2 > 0.

Direct and inverse problems for Sturm–Liouville operators with spectral parameter
linearly contained in the boundary conditions and without discontinuities has been thor-
oughly studied. In [14, 31] an operator-theoretic formulation of the problems of the
form (1.1)–(1.3) has been given. Oscillation and comparison results have been obtained
in [6, 7, 19]. Basic properties and eigenfunction expansions have been considered in
[17, 20, 21, 33]. Inverse spectral problems have been investigated in [8, 9, 12, 15].

Boundary value problems with discontinuities inside the interval have been extensively
studied. Sturm–Liouville problems both with eigenparameter dependent and independent
boundary conditions and with discontinuities inside an interval have been considered in
[1, 2, 3, 16, 23, 28, 32, 34, 35] and other works.

Boundary value problems with discontinuities inside the interval often appear in math-
ematics, mechanics, physics, geophysics and other branches of natural sciences. As a rule,
such problems are connected with discontinuous material properties. The inverse problem
of the reconstructing the material properties of a medium from data collected outside
of the medium is of central importance in disciplines ranging from engineering to the
geosciences.

Various mathematical and physical applications of discontinuous boundary value prob-
lems are found in mathematics for investigating spectral properties of some classes of differ-
ential, integrodifferential and integral operators, in the theory of heat and mass transfer,
in electronics for constructing parameters of heterogeneous electronic lines with desir-
able technical characteristics, and in geophysical models for oscillations of the Earth(see
[4, 25, 26]).

In this paper, we study direct and inverse problem for the discontinuous boundary value
problem L. In Section 2, the operator-theoretical formulation of the problem presented.
In Section 3, spectral properties of the eigenvalues and norming constants of the problem
is investigated. In Section 4, we define the Weyl Solution and the Weyl function of the
problem. In Section 5, uniqueness theorems for the solution of the inverse problem from
the Weyl function, from the spectral data, and from two spectra are proved.

2. The operator equation formulation

In this section, we introduce a linear operator A in a suitable Hilbert space such that
the considered problem L can be interpreted as the eigenvalue problem of this operator.

Let the inner product in the Hilbert space H = L2(0, π)⊕ C be defined by

〈F,G〉 =

∫ π

0
f(x)g(x)dx+

1

ρ
f1g1,

where

F =

(
f(x)
f1

)
, G =

(
g(x)
g1

)
∈ H.
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For convenience we will use the notations

R(y) := H1y
′(π) +H2y(π), R′(y) := y′(π) +Hy(π).

We define an operator A acting in H such that

AF :=

(
`f
R(f)

)
with

D(A) :=
{
F =

( f(x)
f1

)
∈ H

∣∣∣f, f ′ ∈ ACloc(J), and have finite

one-hand sided limits f(ξi ± 0) and f ′(ξi ± 0), i = 1, 2,

`f ∈ L2(0, π), U(f) = 0, lj(f) = 0, j = 1, 4, f1 = R′(f)
}
.

Thus, we can pose the discontinuous boundary value problem L as

AY = λY, Y :=

(
y(x)
R′(y)

)
in the Hilbert space H. It is readily verified that the eigenvalues of the operator A coincide
with those of the problem L.

Theorem 2.1. The operator A is symmetric in H.

Proof. First, we prove that A is densely defined in H. For this suppose F =(
f(x)
f1

)
∈ H is orthogonal to all G =

(
g(x)
R′(g)

)
∈ D(A), i.e.,

〈F,G〉 =

∫ π

0
f(x)g(x)dx+

1

ρ
f1R′(g) = 0. (2.1)

Let C̃∞0 denote the set of functions

φ(x) =


φ1(x), x ∈ [0, ξ1),
φ2(x), x ∈ (ξ1, ξ2),
φ3(x), x ∈ (ξ2, π],

where φ1(x) ∈ C∞0 [0, ξ1), φ2(x) ∈ C∞0 (ξ1, ξ2) and φ3(x) ∈ C∞0 (ξ2, π]. Since C̃∞0 ⊕0 ⊆ D(A)

(0 ∈ C), then any G =

(
g(x)

0

)
∈ C̃∞0 ⊕ 0 is orthogonal to F , namely

〈F,G〉 =

∫ π

0
f(x)g(x)dx = 0.
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Consequently, f(x) vanishes, since L2(0, π) is complete with respect to its standard inner
product. Then substituting f(x) = 0 into (2.1) yields

1

ρ
f1R′(g) = 0

for all G =

(
g(x)
R′(g)

)
∈ D(A). Since R′(g) can be chosen arbitrary, hence f1 = 0.

Therefore, F = 0, so D(A) is dense in H.
We prove that A is symmetric. Let

F =

(
f(x)
R′(f)

)
, G =

(
g(x)
R′(g)

)
be arbitrary elements of D(A). By twice integration by parts we get

〈AF,G〉 = 〈F,AG〉 −W (f, g; 0) +W (f, g; ξ1 − 0)−W (f, g; ξ1 + 0)

+W (f, g; ξ2 − 0)−W (f, g; ξ2 + 0)

+W (f, g;π)− 1

ρ
(R(f)R′(g)−R′(f)R(g)), (2.2)

where as usual, W (f, g;x) denotes the Wronskians f(x)g′(x) − f ′(x)g(x). Since F,G ∈
D(A), it follows from (1.2) that

W (f, g; 0) = 0, (2.3)

and from (1.4)–(1.7), we get

W (f, g; ξi − 0) = W (f, g; ξi + 0), i = 1, 2. (2.4)

Moreover, the direct calculations gives

ρW (f, g;π) = R(f)R′(g)−R′(f)R(g). (2.5)

Now, inserting (2.3)–(2.5) into (2.2), yields the required equality

〈AF,G〉 = 〈F,AG〉, F,G ∈ D(A).

So A is symmetric.J

Corollary 2.2. All eigenvalues of the problem L are real.

We can now assume that all eigenfunctions of the problem L are real-valued.

Corollary 2.3. If λ1 and λ2 are two different eigenvalues of the problem L, then corre-
sponding eigenfunctions y1 and y2 of this problem are orthogonal in the following sense:∫ π

0
y1(x)y2(x)dx+

1

ρ
R′(y1)R′(y2) = 0.
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3. Properties of the spectrum

In this section, properties of the spectrum of the discontinuous problem L will be
investigated.

For what follows we need the following lemma, which can be proved similar to [30,
Theorem 2].

Lemma 3.1. Let q(x) ∈ L2(a, b), a, b ∈ R, be a real-valued function and f(λ), g(λ) be
given entire functions. Then for any λ ∈ C the equation

−y′′ + q(x)y = λy, x ∈ [a, b]

has a unique solution y = y(x, λ) satisfying the initial conditions

y(a) = f(λ), y′(a) = g(λ) (or y(b) = f(λ), y′(b) = g(λ)).

For each fixed x ∈ [a, b], y(x, λ) is an entire function of λ.

We shall define two solutions

ϕ(x, λ) =


ϕ1(x, λ), x ∈ [0, ξ1),
ϕ2(x, λ), x ∈ (ξ1, ξ2),
ϕ3(x, λ), x ∈ (ξ2, π]

and

ψ(x, λ) =


ψ1(x, λ), x ∈ [0, ξ1),
ψ2(x, λ), x ∈ (ξ1, ξ2),
ψ3(x, λ), x ∈ (ξ2, π]

of equation (1.1) as follows:
Let ϕ1(x, λ) be the solution of equation (1.1) on the interval [0, ξ1) satisfying the initial
conditions

ϕ1(0, λ) = 1, ϕ′1(0, λ) = h. (3.1)

By virtue of Lemma 3.1, after defining this solution we can define the solution ϕ2(x, λ) of
equation (1.1) on (ξ1, ξ2) by the nonstandard initial conditions

ϕ2(ξ1 + 0, λ) = α1ϕ1(ξ1−0, λ), ϕ′2(ξ1 + 0, λ) = α−1
1 ϕ′1(ξ1−0, λ) +α2ϕ1(ξ1−0, λ). (3.2)

After defining this solution we can define the solution ϕ3(x, λ) of equation (1.1) on (ξ2, π]
by the nonstandard initial conditions

ϕ3(ξ2 + 0, λ) = β1ϕ2(ξ2− 0, λ), ϕ′3(ξ2 + 0, λ) = β−1
1 ϕ′2(ξ2− 0, λ) +β2ϕ2(ξ2− 0, λ). (3.3)

Obviously ϕ(x, λ) satisfies equation (1.1) on J , the boundary condition (1.2) and the jump
conditions (1.4)–(1.7).

Analogously first we define the solution ψ3(x, λ) on (ξ2, π] by the initial conditions

ψ3(π, λ) = λ−H1, ψ′3(π, λ) = −λH +H2. (3.4)
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Again, after defining this solution we define the solution ψ2(x, λ) of equation (1.1) on
(ξ1, ξ2) by the nonstandard initial conditions

ψ2(ξ2− 0, λ) = β−1
1 ψ3(ξ2 + 0, λ), ψ′2(ξ2− 0, λ) = β1ψ

′
3(ξ2 + 0, λ)−β2ψ3(ξ2 + 0, λ). (3.5)

Using this solution, we define the solution ψ1(x, λ) of equation (1.1) on [0, ξ1) by the
nonstandard initial conditions

ψ1(ξ1−0, λ) = α−1
1 ψ2(ξ1 + 0, λ), ψ′1(ξ1−0, λ) = α1ψ

′
2(ξ1 + 0, λ)−α2ψ2(ξ1 + 0, λ). (3.6)

It is clear that ψ(x, λ) satisfies equation (1.1), the boundary condition (1.3) and the jump
conditions (1.4)–(1.7).

For any solution y(x, λ) of equation (1.1) we shall use the notation

yλ(x) := y(x, λ).

Let us consider the Wronskians

χi(λ) := W (ψiλ, ϕiλ;x), x ∈ Ωi, i = 1, 3, (3.7)

where Ω1 = [0, ξ1), Ω2 = (ξ1, ξ2) and Ω3 = (ξ2, π]. By virtue of Liouville’s formula for the
Wronakian (see [10, p. 83]), χi(λ) (i = 1, 3) are independent of x ∈ Ωi (i = 1, 3). In view
of (3.2), (3.3), (3.5) and (3.6), a short calculation gives

W (ψ1λ, ϕ1λ; ξ1 − 0) = W (ψ2λ, ϕ2λ; ξ1 + 0) = W (ψ2λ, ϕ2λ; ξ2 − 0) = W (ψ3λ, ϕ3λ; ξ2 + 0),

so, χ1(λ) = χ2(λ) = χ3(λ) for each λ ∈ C.
Now we may introduce the characteristic function

∆(λ) := χ3(λ). (3.8)

Clearly
∆(λ) = V (ϕλ) = −U(ψλ). (3.9)

It follows from Lemma 3.1 that ∆(λ) is an entire function of λ and it has an at most
countable set of zeros {λn}.

Theorem 3.2. The zeros {λn} of the characteristic function ∆(λ) coincide with the eigen-
values of the boundary value problem L. The functions ϕ(x, λn) and ψ(x, λn) are eigen-
functions and there exists a sequence {kn} such that

ψ(x, λn) = knϕ(x, λn), kn 6= 0. (3.10)

Proof. Let λ0 be a zero of ∆(λ). Then from (3.7) and (3.8) we have W (ψ1λ0 , ϕ1λ0 ;x) =
0 for all x ∈ Ω1, and therefore, the functions ϕ1(x, λ0) and ψ1(x, λ0) are linearly dependent,
i.e.,

ψ1(x, λ0) = k
(1)
0 ϕ1(x, λ0), x ∈ Ω1



114 I. Dehghani, A. J. Akbarfam

for some k
(1)
0 6= 0. Consequently, ψ(x, λ0) satisfies also the boundary condition (1.2) and

hence ψ(x, λ0) is an eigenfunction for the eigenvalue λ0.
Conversely, let λ0 be an eigenvalue of L and let y(x, λ0) be a corresponding eigen-

function, but ∆(λ0) 6= 0. Then it follows from (3.7) and (3.8) that the pairs of functions
(ψ1λ0 , ϕ1λ0), (ψ2λ0 , ϕ2λ0) and (ψ3λ0 , ϕ3λ0) are linearly independent on [0, ξ1), (ξ1, ξ2) and
(ξ2, π], respectively. Therefore, y(x, λ0) can be represented as follows:

y(x, λ0) =


c1ψ1λ0(x) + c2ϕ1λ0(x), x ∈ [0, ξ1),
c3ψ2λ0(x) + c4ϕ2λ0(x), x ∈ (ξ1, ξ2),
c5ψ3λ0(x) + c6ϕ3λ0(x), x ∈ (ξ2, π],

where at least one of the constants ci (i = 1, 6) is not zero. Since y(x, λ0) is an eigenfunc-
tion, then the equations 

U(yλ0) = 0,
V (yλ0) = 0,
lj(yλ0) = 0, j = 1, 4

(3.11)

can be considered as a homogenous system of linear equations of the variables ci (i = 1, 6).
It follows from (3.1)–(3.9) that the determinant of this system is∣∣∣∣∣∣∣∣∣∣∣∣

0 −∆(λ0) 0 0 0 0
0 0 0 0 ∆(λ0) 0

−ϕ2λ0(ξ1+ 0) −ψ2λ0(ξ1+ 0) ϕ2λ0(ξ1+ 0) ψ2λ0(ξ1+ 0) 0 0
−ϕ′2λ0

(ξ1+ 0) −ψ′2λ0
(ξ1+ 0) ϕ′2λ0

(ξ1+ 0) ψ′2λ0
(ξ1+ 0) 0 0

0 0 −ϕ3λ0(ξ2+ 0) −ψ3λ0(ξ2+ 0) ϕ3λ0(ξ2+ 0) ψ3λ0(ξ2+ 0)
0 0 −ϕ′3λ0

(ξ2+ 0) −ψ′3λ0
(ξ2+ 0) ϕ′3λ0

(ξ2+ 0) ψ′3λ0
(ξ2+ 0)

∣∣∣∣∣∣∣∣∣∣∣∣
= −∆4(λ0) 6= 0.

Therefore, the system (3.11) has only the trivial solution ci = 0 (i = 1, 6), which is a
contradiction. Thus, ∆(λ0) = 0.

Now let λ0 be an eigenvalue. It follows from (3.7) and (3.8) that

χi(λ0) = W (ψiλ0 , ϕiλ0 ;x) = 0, x ∈ Ωi, i = 1, 3,

and therefore,

ψi(x, λ0) = k
(i)
0 ϕi(x, λ0), x ∈ Ωi, i = 1, 3 (3.12)

for some k
(i)
0 6= 0 (i = 1, 3). From (3.12) we conclude that ψ(x, λ0) and ϕ(x, λ0) satisfies

also the boundary conditions (1.2) and (1.3), respectively, and hence ϕ(x, λ0) and ψ(x, λ0)

are eigenfunctions. We show that k
(1)
0 = k

(2)
0 = k

(3)
0 . Suppose, if possible that k

(1)
0 6= k

(2)
0 .

Using (3.1)–(3.6) and (3.12), we have

(k
(1)
0 − k

(2)
0 )ϕ2(ξ1 + 0, λ0) = k

(1)
0 (α1ϕ1(ξ1 − 0, λ0) + α−1

1 ϕ′1(ξ1 − 0, λ0))

−k(2)
0 ϕ2(ξ1 + 0, λ0)

= α1ψ1(ξ1 − 0, λ0) + α−1
1 ψ′1(ξ1 − 0, λ0)− ψ2(ξ1 + 0, λ0)
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= 0.

Hence

ϕ2(ξ1 + 0, λ0) = 0. (3.13)

Analogously, starting from (k
(1)
0 − k(2)

0 )ϕ′2(ξ1 + 0, λ0) and following the same procedure,
one can derive that

ϕ′2(ξ1 + 0, λ0) = 0. (3.14)

Since ϕ2(x, λ0) is a solution of equation (1.1) on (ξ1, ξ2) and satisfies the initial conditions
(3.13) and (3.14), it follows that ϕ2(x, λ0) = 0 identically on (ξ1, ξ2). taking this into
account and using (1.4) and (1.5) we get

ϕ1(ξ1 − 0, λ0) = ϕ′1(ξ1 − 0, λ0) = 0. (3.15)

Also making use of (3.3) we obtain

ϕ3(ξ2 + 0, λ0) = ϕ′3(ξ2 + 0, λ0) = 0. (3.16)

From (3.15) and (3.16) by the same argument as for ϕ2(x, λ0) it follows that ϕ1(x, λ0) = 0
identically on [0, ξ1) and ϕ3(x, λ0) = 0 identically on (ξ2, π]. Hence ϕ(x, λ0) = 0 identically

on J . However, this contradicts (3.1). Thus, k
(1)
0 = k

(2)
0 . in the same way one can show

that k
(2)
0 = k

(3)
0 . Consequently,

ψ(x, λ0) = k0ϕ(x, λ0), x ∈ J

for some k0 6= 0. This completes the proof of Theorem 3.2.J

Recall that the set of eigenvalues {λn} of the problem L coincide with the set of
eigenvalues of the operators A. It is easy to show that

Φn :=

(
ϕ(x, λn)
R′(ϕλn)

)
are eigenelements of A. Here we define norming constants of the problem L by

γn := ‖Φn‖2H =

∫ π

0
ϕ2(x, λn)dx+

1

ρ
(R′(ϕλn))2. (3.17)

The numbers {λn, γn}n≥0 are called the spectral data of the problem L.

Lemma 3.3. The following relation holds:

.
∆(λn) = −knγn, (3.18)

where the numbers kn are defined by (3.10) and
.
∆(λ) = d/dλ(∆(λ)).
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Proof. Using the Lagrange identity (see [29, Part II, p. 50]) for solutions ϕ(x, λ) and
ϕ(x, λn), and taking into account (2.3) and (2.4) we get∫ π

0
ϕ(x, λ)ϕ(x, λn)dx =

W (ϕλ, ϕλn ;π)

λ− λn

=
W (ϕλ, ψλn ;π)

kn(λ− λn)

=
R(ϕλ)− λnR′(ϕλ)

kn(λ− λn)

=
(λ− λn)R′(ϕλ)−∆(λ)

kn(λ− λn)
.

For λ→ λn, this yields

.
∆(λn) = −kn

∫ π

0
ϕ2(x, λn)dx−R′(ϕλn)

= −kn
(
γn −

1

ρ
(R′(ϕλn))2

)
−R′(ϕλn). (3.19)

Now putting R′(ϕλn) = (1/kn)R′(ψλn) = ρ/kn in (3.19) we get (3.18).J

Definition 3.4. The algebraic multiplicity of an eigenvalue λ of the problem L is the
order of it as a zero of the characteristic function ∆(λ). The geometric multiplicity of an
eigenvalue λ is the dimension of its eigenspace, i.e., the number of its linearly independent
eigenfunctions.

Theorem 3.5. The eigenvalues of the problem L are algebraically and geometrically sim-
ple.

Proof. Let λ0 be an eigenvalue of the problem L. By virtue of Lemma 3.3, we have.
∆(λ0) 6= 0, and hence λ0 is algebraically simple.

Let us show that λ0 is geometrically simple. Suppose on the contrary that there
are two linearly independent eigenfunctions y1(x) and y2(x) corresponding to the same
eigenvalue λ0. Since y1(x) and y2(x) satisfy (1.2), we have W (y1, y2; 0)=0. Therefore,
y1(x) and y2(x) are linearly dependent which is a contradiction. This completes the proof
of Theorem 3.5.J

Lemma 3.6. For |s| → ∞, the following asymptotic formulae hold:

dk

dxk
ϕ1(x, λ) =

dk

dxk
cos sx+O

(
|s|k−1e|τ |x

)
, k = 0, 1, (3.20)

dk

dxk
ϕ2(x, λ) =

dk

dxk

(
α+ cos sx+ α− cos s(2ξ1 − x)

)
+O

(
|s|k−1e|τ |x

)
, k = 0, 1, (3.21)
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dk

dxk
ϕ3(x, λ) =

dk

dxk

(
α+β+ cos sx+ α−β+ cos s(2ξ1 − x)

+α+β− cos s(2ξ2 − x) + α−β− cos s(2ξ1 − 2ξ2 + x)
)

+O
(
|s|k−1e|τ |x

)
, k = 0, 1, (3.22)

uniformly with respect to x ∈ Ωi (i = 1, 3). Here and in the sequel s =
√
λ is the principle

branch, τ = Im s, and

α± =
1

2

(
α1 ±

1

α1

)
, β± =

1

2

(
β1 ±

1

β1

)
. (3.23)

Proof. Let us show that

dk

dxk
ϕ1(x, λ) =

dk

dxk
cos sx+

h

s

dk

dxk
sin sx

+
1

s

∫ x

0

dk

dxk
sin s(x− t)q(t)ϕ1(t, λ)dt, x ∈ Ω1, k = 0, 1, (3.24)

dk

dxk
ϕ2(x, λ) = α1ϕ1(ξ1 − 0, λ)

dk

dxk
cos s(x− ξ1)

+
1

s

(
α−1

1 ϕ′1(ξ1 − 0, λ) + α2ϕ1(ξ1 − 0, λ)
) dk
dxk

sin s(x− ξ1)

+
1

s

∫ x

ξ1

dk

dxk
sin s(x− t)q(t)ϕ2(t, λ)dt, x ∈ Ω2, k = 0, 1, (3.25)

dk

dxk
ϕ3(x, λ) = β1ϕ1(ξ1 − 0, λ)

dk

dxk
cos s(x− ξ2)

+
1

s

(
β−1

1 ϕ′2(ξ2 − 0, λ) + β2ϕ2(ξ2 − 0, λ)
) dk
dxk

sin s(x− ξ2)

+
1

s

∫ x

ξ2

dk

dxk
sin s(x− t)q(t)ϕ3(t, λ)dt, x ∈ Ω3, k = 0, 1. (3.26)

Since ϕi(t, λ)(i = 1, 3) satisfy (1.1), we have

q(t)ϕi(t, λ) = ϕ′′i (t, λ) + s2ϕi(t, λ), t ∈ Ωi, i = 1, 3. (3.27)

Substituting right-hand side of these equalities in the integrals in (3.24)–(3.26) and twice
integrating by parts the term involving ϕ′′i (t, λ), we obtain (3.24)–(3.26).

Using (3.24), the asymptotic formulae for ϕ1(x, λ) can be found in the same way as in
[13, Lemma 1.1.2]. Therefore, we shall formulate them without proof. Let us prove (3.21).
Using (3.20) we have

ϕ1(ξ1 − 0, λ) = cos sξ1 +O
(
|s|−1e|τ |ξ1

)
,

ϕ′1(ξ1 − 0, λ) = −s sin sξ1 +O
(
e|τ |ξ1

)
.
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Substituting these asymptotic expressions into (3.25) we obtain

ϕ2(x, λ) = α+ cos sx+ α− cos s(2ξ1 − x)

+
1

s

∫ x

ξ1

sin s(x− t)q(t)ϕ2(t, λ)dt+O
(
|s|−1e|τ |x

)
. (3.28)

Multiplying through by e−|τ |x and denoting f(x, λ) := ϕ2(x, λ)e−|τ |x, we have

f(x, λ) =
(
α+ cos sx+ α− cos s(2ξ1 − x)

)
e−|τ |x

+
1

s

∫ x

ξ1

sin s(x− t)e−|τ |xq(t)f(t, λ)dt+O
(
|s|−1

)
.

Let µ(λ) = sup
x∈Ω2

|f(x, λ)|. Then using the inequalities

| cos sx| ≤ e|τ |x, | cos s(2ξ1 − x)| ≤ e|τ |x, x ∈ Ω2,

| sin s(x− t)| ≤ e|τ |x, x ∈ Ω2, t ∈ (ξ1, x]

we obtain

µ(λ) ≤ α+ + |α−|+ 1

|s|
µ(λ)

∫ ξ2

ξ1

|q(t)|dt+
µ0

|s|
for some µ0 > 0. For sufficiently large values of |s| this gives

µ(λ) ≤ C

(
1−

∫ ξ2
ξ1
|q(t)|dt
|s|

)−1

.

Hence |f(x, λ) ≤ µ(λ)| = O(1), as |s| → ∞, and therefore ϕ2(x, λ) = O
(
e|τ |x

)
, uniformly

with respect to x ∈ Ω2, as |s| → ∞. Substituting this estimate into the right-hand side
of (3.28), we get (3.21). The proof of (3.22) is similar to that of (3.21) and hence is
omitted.J

Similarly one can establish the following lemma for ψi(x, λ) (i = 1, 3):

Lemma 3.7. For |s| → ∞, the following asymptotic formulae hold:

dk

dxk
ψ1(x, λ) = s2 d

k

dxk

(
α+β+ cos s(π − x)− α−β+ cos s(π − 2ξ1 + x)

−α+β− cos s(π − 2ξ2 + x) + α−β− cos s(π − 2ξ2 + 2ξ1 − x)
)

+O
(
|s|k+1e|τ |(π−x)

)
, k = 0, 1, (3.29)

dk

dxk
ψ2(x, λ) = s2 d

k

dxk

(
β+ cos s(π − x)− β− cos s(π − 2ξ2 + x)

)
+O

(
|s|k+1e|τ |(π−x)

)
, k = 0, 1, (3.30)

dk

dxk
ψ3(x, λ) = s2 d

k

dxk
cos s(π − x) +O

(
|s|k+1e|τ |(π−x)

)
k = 0, 1, (3.31)

uniformly with respect to x ∈ Ωi (i = 1, 3).



Direct and Inverse Problem the Sturm–Liouville Operator 119

For what follows we need to study the spectral properties of the discontinuous eigen-
value problem L0 for the equation:

`0y := −y′′ = λy, x ∈ J, (3.32)

with the boundary conditions

U0(y) := y′(0) = 0, V0(y) := y′(π) = 0, (3.33)

and with the jump conditions

l01(y) := y(ξ1 + 0)− α1y(ξ1 − 0) = 0, (3.34)

l02(y) := y′(ξ1 + 0)− α−1
1 y′(ξ1 − 0) = 0, (3.35)

l03(y) := y(ξ2 + 0)− β1y(ξ2 − 0) = 0, (3.36)

l04(y) := y′(ξ2 + 0)− β−1
1 y′(ξ2 − 0) = 0. (3.37)

Let ϕ0(x, λ) and ψ0(x, λ) be the solutions of (3.32) satisfying the initial conditions

ϕ0(0, λ) = ψ0(π, λ) = 1, ϕ′0(0, λ) = ψ′0(π, λ) = 0. (3.38)

Then we have

ϕ0(x, λ)=


cos sx, x ∈ Ω1,
α+ cos sx+ α− cos s(2ξ1 − x), x ∈ Ω2,
α+β+ cos sx+ α−β+ cos s(2ξ1 − x)
+α+β− cos s(2ξ2 − x) + α−β− cos s(2ξ1 − 2ξ2 + x), x ∈ Ω3,

(3.39)

ψ0(x, λ)=


α+β+ cos s(π − x)− α−β+ cos s(π − 2ξ1 + x)
−α+β− cos s(π − 2ξ2 + x)− α−β− cos s(π − 2ξ2 + 2ξ1 − x), x ∈ Ω1,
β+ cos s(π − x)− β− cos s(π − 2ξ2 + x), x ∈ Ω2,
cos s(π − x), x ∈ Ω3.

(3.40)

Let

∆0(λ) := −s
(
α+β+ sin sπ − α−β+ sin s(2ξ1 − π)

−α+β− sin s(2ξ2 − π) + α−β− sin s(2ξ1 − 2ξ2 + π)
)
. (3.41)

Clearly ∆0(λ) = V0(ϕ0λ). Analogous to the problem L, one can show that the zeros
{λ0

n = (s0
n)2}n≥0 of the entire function ∆0(λ) coincide with the eigenvalues of the problem

L0; the functions ϕ0(x, λ0
n) and ψ0(x, λ0

n) are eigenfunctions and there exists a sequence
{k0

n}n≥0 such that
ψ0(x, λ0

n) = k0
nϕ0(x, λ0

n), k0
n 6= 0. (3.42)
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Also, using the same techniques as in the problem L, we can prove that the zeros of ∆0(λ)
are real and eigenfunctions related to different eigenvalues are orthogonal in the Hilbert
space L2(0, π). Denote norming constants of the problem L0 by

γ0
n =

∫ π

0
ϕ2

0(x, λ0
n)dx. (3.43)

Then using (3.39) we calculate

γ0
n = γ̂0

n +
υ0
n

s0
n

, (3.44)

where

γ̂0
n =

ξ1

2
+

(
(α+)2

2
+

(α−)2

2
+ α+α− cos 2s0

nξ1

)
(ξ2 − ξ1)

+

(
(α+β+)2

2
+

(α−β+)2

2
+

(α+β−)2

2
+

(α−β−)2

2

+α+α−
(
(β+)2 + (β−)2

)
cos 2s0

nξ1 + (α+)2β+β− cos 2s0
nξ2

+2α+α−β+β− cos 2s0
n(ξ1 − ξ2) + (α−)2β+β− cos 2s0

n(2ξ1 − ξ2)

)
(π − ξ2)

(3.45)

and

υ0
n =

(α+β+)2

4
sin 2s0

nπ −
α+α−(β+)2

2
sin 2s0

n(ξ1 − π)

−(α−β+)2

4
sin 2s0

n(2ξ1 − π)− 1

2
β+β−((α+)2 + (α−)2) sin 2s0

n(ξ2 − π)

−(α+β−)2

4
sin 2s0

n(2ξ2 − π)− 1

2
α+α−β+β− sin 2s0

n(ξ1 + ξ2 − π)

+
1

2
α+α−β+β− sin 2s0

n(ξ1 − ξ2 + π) +
1

2
α+α−(β−)2 sin 2s0

n(ξ1 − 2ξ2 + π)

+
(α−β−)2

4
sin 2s0

n(2ξ1 − 2ξ2 + π). (3.46)

Similar to (3.18) one can get the following equality:

.
∆0(λ0

n) = −k0
nγ

0
n. (3.47)

This shows that
.
∆(λ0

n) 6= 0 for all n ≥ 0, i.e., the zeros of ∆0(λ) are simple. Using the
study [18] (see also [22]), we obtain

s0
n =

√
λ0
n = n+ ηn, {ηn}n≥0 ∈ l∞. (3.48)

In the same way as [1, Lemma 1] we can prove the following lemma:
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Lemma 3.8. The sequence {s0
n}n≥0 is separated, i.e.,

d := inf
n 6=m
|s0
n − s0

m| > 0. (3.49)

Theorem 3.9. The discontinuous boundary value problem L has a countable set of eigen-
values {λn}n≥0. Moreover, for n ≥ 0,

sn :=
√
λn = s0

n−1 +
ωn
n

+
ζn
n
, {ζn}n≥0 ∈ l2, (3.50)

where

ωn = −
(
w1 cos s0

n−1π + w2 cos s0
n−1(2ξ1 − π) + w3 cos s0

n−1(2ξ2 − π)

+w4 cos s0
n−1(2ξ1 − 2ξ2 + π)

)
/
(

2
.
∆0(λ0

n−1)
)
, (3.51)

w1 = α+β+

(
H + h+

1

2

∫ π

0
q(t)dt

)
+

1

2

(
α+β2 + β+α2

)
, (3.52)

w2 = α−β+

(
H − h+

1

2

∫ π

0
q(t)dt−

∫ ξ1

0
q(t)dt

)
+

1

2

(
α−β2 + β+α2

)
, (3.53)

w3 = α+β−
(
H − h− 1

2

∫ π

0
q(t)dt+

∫ π

ξ2

q(t)dt

)
+

1

2

(
α+β2 − β−α2

)
, (3.54)

w4 = α−β−
(
H + h+

1

2

∫ π

0
q(t)dt−

∫ ξ2

ξ1

q(t)dt

)
+

1

2

(
α−β2 − β−α2

)
. (3.55)

Proof. Substituting the asymptotics for ϕ1(x, λ) from (3.20) into the right-hand side
of (3.24), we calculate

ϕ1(x, λ) = cos sx+ f11(x)
sin sx

s
+

1

2s

∫ x

0
q(t) sin s(x− 2t)dt+O

(
|s|−2e|τ |x

)
,

(3.56)

ϕ′1(x, λ) = −s sin sx+ f11(x) cos sx+
1

2

∫ x

0
q(t) cos s(x− 2t)dt+O

(
|s|−1e|τ |x

)
,

(3.57)

where

f11(x) = h+
1

2

∫ x

0
q(t)dt, x ∈ Ω1. (3.58)

Using (3.56), (3.57), and substituting the asymptotics for ϕ2(x, λ) from (3.21) into the
right-hand side of (3.25) we obtain

ϕ2(x, λ) = α+ cos sx+ α− cos s(2ξ1 − x) +
1

s

(
f21(x) sin sx+ f22(x) sin s(2ξ1 − x)

)
+

1

s

(
α+

2

∫ x

0
q(t) sin s(x− 2t)dt+

α−

2

∫ ξ1

0
q(t) sin s(2ξ1 − x− 2t)dt
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+
α−

2

∫ x

ξ1

q(t) sin s(2ξ1 + x− 2t)dt

)
+O

(
|s|−2e|τ |x

)
, (3.59)

ϕ′2(x, λ) = −s
(
α+ sin sx− α− sin s(2ξ1 − x)

)
+
(
f21(x) cos sx− f22(x) cos s(2ξ1 − x)

)
+
α+

2

∫ x

0
q(t) cos s(x− 2t)dt

−α
−

2

∫ ξ1

0
q(t) cos s(2ξ1 − x− 2t)dt+

α−

2

∫ x

ξ1

q(t) cos s(2ξ1 + x− 2t)dt

+O
(
|s|−1e|τ |x

)
, (3.60)

where

f21(x) = α+

(
h+

1

2

∫ ξ1

0
q(t)dt+

1

2

∫ x

ξ1

q(t)dt

)
+
α2

2
, (3.61)

f22(x) = α−
(
h+

1

2

∫ ξ1

0
q(t)dt− 1

2

∫ x

ξ1

q(t)dt

)
− α2

2
. (3.62)

Using (3.59), (3.60), and substituting the asymptotics for ϕ3(x, λ) from (3.22) into the
right-hand side of (3.26) we get

ϕ3(x, λ) = α+β+ cos sx+ α−β+ cos s(2ξ1 − x) + α+β− cos s(2ξ2 − x)

+α−β− cos s(2ξ1 − 2ξ2 + x) +
1

s

(
f31(x) sin sx+ f32(x) sin s(2ξ1 − x)

+f33(x) sin s(2ξ2 − x) + f34(x) sin s(2ξ1 − 2ξ2 + x)
)

+
1

s

∫ x

0
Q1(x, t) sin st dt+O

(
|s|−2e|τ |x

)
, (3.63)

ϕ′3(x, λ) = −s
(
α+β+ sin sπ − α−β+ sin s(2ξ1 − π)− α+β− sin s(2ξ2 − π)

+α−β− sin s(2ξ1 − 2ξ2 + π)
)

+ f31(x) cos sx− f32(x) cos s(2ξ1 − x)

−f33(x) cos s(2ξ2 − x) + f34(x) cos s(2ξ1 − 2ξ2 + x)

+

∫ x

0
Q2(x, t) cos st dt+O

(
|s|−1e|τ |x

)
, (3.64)

where

f31(x)=α+β+

(
h+

1

2

∫ ξ1

0
q(t)dt+

1

2

∫ ξ2

ξ1

q(t)dt+
1

2

∫ x

ξ2

q(t)dt

)
+

1

2

(
α+β2 + β+α2

)
,

(3.65)

f32(x)=α−β+

(
h+

1

2

∫ ξ1

0
q(t)dt− 1

2

∫ ξ2

ξ1

q(t)dt− 1

2

∫ x

ξ2

q(t)dt

)
− 1

2

(
α−β2 + β+α2

)
,

(3.66)
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f33(x)=α+β−
(
h+

1

2

∫ ξ1

0
q(t)dt+

1

2

∫ ξ2

ξ1

q(t)dt− 1

2

∫ x

ξ2

q(t)dt

)
− 1

2

(
α+β2 − β−α2

)
,

(3.67)

f34(x)=α−β−
(
h+

1

2

∫ ξ1

0
q(t)dt− 1

2

∫ ξ2

ξ1

q(t)dt+
1

2

∫ x

ξ2

q(t)dt

)
+

1

2

(
α−β2 − β−α2

)
,

(3.68)

and the terms ∫ x

0
Q1(x, t) sin st dt, Q1(x, .) ∈ L2(0, π), x ∈ Ω3,∫ x

0
Q2(x, t) cos st dt, Q2(x, .) ∈ L2(0, π), x ∈ Ω3

are obtained by combining the integrals with integrands of the form q(t) sin sp(t) and
q(t) cos sp(t), respectively.

According to (3.9),

∆(λ) = (λ−H1)ϕ′(π, λ) + (λH −H2)ϕ(π, λ).

Hence by virtue of (3.63) and (3.64),

∆(λ) = −s3
(
α+β+ sin sπ − α−β+ sin s(2ξ1 − π)− α+β− sin s(2ξ2 − π)

+α−β− sin s(2ξ1 − 2ξ2 + π)
)

+ s2
(
w1 cos sπ + w2 cos s(2ξ1 − π)

+w3 cos s(2ξ2 − π) + w4 cos s(2ξ1 − 2ξ2 + π)
)

+ s2I(s), (3.69)

where w1, w2, w3 and w4 are given by (3.52)–(3.55), and

I(s) =

∫ π

0
Q2(π, t) cos st dt+O

(
|s|−1e|τ |π

)
. (3.70)

Denote

Γn = {λ ∈ C : |λ| =
(
|s0
n−1|+ d

2

)2}, (3.71)

Gδ = {s : |s− s0
k| ≥ δ, k = 0, 1, 2, . . .}, (3.72)

where d is defined by (3.49) and δ is sufficiently small positive number. Using known
methods (see, e.g., [5, Theorem 12.4]) we get

|∆0(λ)| ≥ Cδ|s|e|τ |π, s ∈ Gδ. (3.73)

On the other hand, it follows from (3.69) that∣∣∆(λ)− s2∆0(λ)
∣∣ < C ′δ|s|2e|τ |π (3.74)
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for sufficiently large values of |s|. Thus,∣∣s2∆0(λ)
∣∣ > Cδ|s|3e|τ |π > C ′δ|s|2e|τ |π >

∣∣∆(λ)− s2∆0(λ)
∣∣ (3.75)

for sufficiently large values of n ∈ N and s ∈ Γn. Hence by Rouché’s theorem [11, p.
125], we can establish that for sufficiently large values of n ∈ N, the number of zeros
of s2∆0(λ) + {∆(λ) − s2∆0(λ)} = ∆(λ) inside Γn coincides with the number of zeros of

s2∆0(λ), i.e., it equals n + 1. Thus, in the circle {λ : |λ| <
(
|s0
n−1| + d

2

)2} there exists
exactly n+ 1 eigenvalues of L: λ0, . . . , λn. Analogously, by using Rouché’s theorem one
can prove that for sufficiently large values of n, every circle σn(δ) = {s : |s − s0

n−1| ≤ δ}
contains exactly one zero of ∆(λ), namely sn =

√
λn. Since δ > 0 is arbitrary, we must

have
sn = s0

n−1 + εn, εn = o(1), n→∞. (3.76)

It is not difficult to see that

εn = O

(
1

n

)
. (3.77)

By virtue of (3.69) and the the relation ∆(λn) = 0 we get

∆0(λn) = O(1).

Taking into account that ∆0(λ0
n) = 0 and using Taylor’s expansion of ∆0(s2) at s = s0

n−1,
this yields

εn
.
∆0(λ0

n−1) = O

(
1

s0
n−1

)
+O

(
ε2
n

)
. (3.78)

It follows from (3.44) that ∣∣γ0
n

∣∣ � C. (3.79)

It means that γ0
n = O(1) and (γ0

n)−1 = O(1). By virtue of (3.38) and (3.42) we have

k0
n = ψ(0, λ0

n) =
1

ϕ(π, λ0
n)
.

Therefore, k0
n = O(1) and (k0

n)−1 = O(1), i.e., k0
n � C. Together with (3.47) and (3.79),

this yields ∣∣∣ .∆0(λ0
n)
∣∣∣ � C. (3.80)

Now (3.77) follows from (3.48), (3.78) and (3.80). By virtue of (3.48), (3.76), and using
the method of [27, p. 66] (see also [27, Lemma 1.4.3]), we obtain{∫ π

0
Q2(π, t) cos snt dt

}
n≥0

∈ l2.

Taking this into account, it follows from (3.69), the relation ∆(λn) = 0 and (3.77) that

∆0(λn)+w1 cos snπ + w2 cos sn(2ξ1 − π)
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+w3 cos sn(2ξ2 − π) + w4 cos sn(2ξ1 − 2ξ2 + π) + κn1 = 0,

where {κn1}n≥0 ∈ l2. Using Taylor’s expansions of ∆0(s2) and w1 cos sπ + w2 cos s(2ξ1 −
π) + w3 cos s(2ξ2 − π) + w4 cos s(2ξ1 − 2ξ2 + π) at s = s0

n−1, this yields

2εns
0
n−1

.
∆0(λ0

n−1)+w1 cos s0
n−1π + w2 cos s0

n−1(2ξ1 − π)

+w3 cos s0
n−1(2ξ2 − π) + w4 cos s0

n−1(2ξ1 − 2ξ2 + π) + κn2 = 0,

where, {κn2}n≥0 ∈ l2. From this, (3.48), (3.77) and (3.80) we obtain (3.50). Theorem 3.9
is proved.J

Theorem 3.10. The eigenfunctions

ϕ(x, λn) =


ϕ1(x, λn), x ∈ Ω1

ϕ2(x, λn), x ∈ Ω2

ϕ3(x, λn), x ∈ Ω3

(3.81)

of the discontinuous boundary value problem L satisfy the following asymptotic estimates:

ϕ1(x, λn)=cos s0
n−1x+

1

n
(f11(x)− xωn) +

κn1(x)

n
, (3.82)

ϕ2(x, λn)=α+ cos s0
n−1x+ α− cos s0

n−1(2ξ1 − x) +
1

n

( (
f21(x)− α+xωn)

)
sin s0

n−1x

+
(
f22(x)− α−(2ξ1 − x)ωn

)
sin s0

n−1(2ξ1 − x)
)

+
κn2(x)

n
, (3.83)

ϕ3(x, λn)=α+β+ cos s0
n−1x+ α−β+ cos s0

n−1(2ξ1 − x) + α+β− cos s0
n−1(2ξ2 − x)

+α−β− cos s0
n−1(2ξ1 − 2ξ2 + x) +

1

n

( (
f31(x)− α+β+xωn

)
sin s0

n−1x

+
(
f32(x)− α−β+(2ξ1 − x)ωn

)
sin s0

n−1(2ξ1 − x)

+
(
f33(x)− α+β−(2ξ2 − x)ωn

)
sin s0

n−1(2ξ2 − x)

+
(
f34(x)− α−β−(2ξ1 − 2ξ2 + x)ωn

)
sin s0

n−1(2ξ1 − 2ξ2 + x)
)

+
κn3(x)

n
,

(3.84)

where |κni(x)| < C on Ωi (i = 1, 3) and {κni(x)}n≥0 ∈ l2 for x ∈ Ωi (i = 1, 3).

Proof. Let us consider only ϕ1(x, λn). Other cases can be considered in a similar way
using (3.59) and (3.63). From the asymptotic formula (3.56) for λ = λn we have

ϕ1(x, λn) = cos snx+ f11(x)
sin snx

sn
+

1

2sn

∫ x

0
q(t) sin sn(x− 2t)dt+O

(
1

s2
n

)
.

(3.85)

Using (3.50) and Taylor’s expansions of cos sx, sin sx and sin s(x − 2t) at s = s0
n−1, this

yields

ϕ1(x, λn) = cos s0
n−1x+

1

n
(f11(x)− xωn − ζnx) sin s0

n−1x
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+
1

2n

∫ x

0
q(t) sin s0

n−1(x− 2t) dt+O

(
1

n2

)
. (3.86)

Recall that {ζn}n≥0 ∈ l2 and {
∫ x

0 q(t) sin s0
n−1(x− 2t) dt}n≥0 ∈ l2. Also it is clear that the

functions ζn sin s0
n−1x and

∫ x
0 q(t) sin s0

n−1(x−2t) dt are bounded on Ω1. Consequently, we
get (3.82) from (3.86).J

Theorem 3.11. The norming constants γn of the discontinuous boundary value problem
L have the following asymptotic behavior:

γn = γ̂0
n−1 +

υn
n

+
δn
n
, {δn}n≥0 ∈ l2, (3.87)

where γ̂0
n is given by (3.45) and

υn = b1 sin 2s0
n−1ξ1 + b2 sin 2s0

n−1ξ2 + b3 sin 2s0
n−1(ξ1 − ξ2)

+b4 sin 2s0
n−1(2ξ1 − ξ2) +

(α+β+)2

4
sin 2s0

n−1π −
α+α−(β+)2

2
sin 2s0

n−1(ξ1 − π)

−(α−β+)2

4
sin 2s0

n−1(2ξ1 − π)− 1

2
β+β−((α+)2 + (α−)2) sin 2s0

n−1(ξ2 − π)

−(α+β−)2

4
sin 2s0

n−1(2ξ2 − π)− 1

2
α+α−β+β− sin 2s0

n−1(ξ1 + ξ2 − π)

+
1

2
α+α−β+β− sin 2s0

n−1(ξ1 − ξ2 + π) +
1

2
α+α−(β−)2 sin 2s0

n−1(ξ1 − 2ξ2 + π)

+
(α−β−)2

4
sin 2s0

n−1(2ξ1 − 2ξ2 + π), (3.88)

b1 =

[
− 2α+α−ξ1ωn + α+α−

(
2h+

∫ ξ1
0 q(t) dt

)
+
α2

2
(α− − α+)

]
(ξ2 − ξ1)

+

[
− 2α+α−((β+)2 + (β−)2)ξ1ωn + α+α−((β+)2 + (β−)2)

(
2h+

∫ ξ1
0 q(t) dt

)
−α2

2
(α− − α+)((β+)2 + (β−)2)

]
(π − ξ2), (3.89)

b2 =

[
− 2(α+)2β+β−ξ2ωn − α+α−β+β−

(
2h+

∫ ξ2
0 q(t) dt

)
+

1

2
α+β−(α+β2 + β+α2)− 1

2
α+β+(α+β2 − β−α2)

]
(π − ξ2), (3.90)

b3 =

[
− 4α+α−β+β−(ξ1 − ξ2)ωn − α+α−β+β−

∫ ξ2
ξ1
q(t) dt
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+α−β+(α+β2 − β−α2)− α+β−(α−β2 + β−α2)

]
(π − ξ2), (3.91)

b4 =

[
− 2(α−)2β+β−(2ξ1 − ξ2)ωn + (α+)2β+β−

(
2h+ 2

∫ ξ1
0 q(t) dt−

∫ ξ2
0 q(t) dt

)
+

1

2
α−β+(α+β2 − β−α2)− 1

2
α−β−(α−β2 − β−α2)

]
(π − ξ2). (3.92)

Proof. By virtue of (3.81), we can rewrite (3.17) as

γn =

∫ ξ1

0
ϕ2

1(x, λn) dx+

∫ ξ2

ξ1

ϕ2
2(x, λn) dx+

∫ π

ξ1

ϕ2
3(x, λn) dx+

1

ρ
(R′(ϕλn))2. (3.93)

It follows from (1.3) and (3.22) that

1

ρ
(R′(ϕλn))2 =

1

ρλ2
n

(R(ϕλn))2 = O

(
1

n2

)
. (3.94)

Taking this into account and substituting (3.82)–(3.84) into (3.93) we obtain (3.87).J

Theorem 3.12. The characteristic function ∆(λ) can be represented as follows:

∆(λ) = c0(λ− λ0)(λ1 − λ)
∞∏
n=2

λn − λ
λ0
n

, (3.95)

where

c0 = α+β+π − α−β+(2ξ1 − π)− α+β−(2ξ2 − π) + α−β−(2ξ1 − 2ξ2 + π). (3.96)

Proof. It follows from (3.9) and (3.22) that ∆(λ) is an entire function of λ of order 1/2
and hence by Hadamard’s factorization theorem [11, p. 289], ∆(λ) is uniquely determined
up to a multiplication constant by its zeros:

∆(λ) = C
∞∏
n=0

(
1− λ

λn

)
. (3.97)

The case ∆(0) = 0 requires minor modifications. We consider the function

∆̂(λ) := s2∆0(λ) = −λ2c0

∞∏
n=1

(
1− λ

λ0
n

)
. (3.98)

Then
∆(λ)

∆̂(λ)
= C

(λ− λ0)(λ1 − λ)

c0λ0λ1λ2

∞∏
n=1

λ0
n

λn+1

∞∏
n=1

(
1 +

λn+1 − λ0
n

λ0
n − λ

)
.
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With the help of (3.41), (3.50) and (3.69), we calculate

lim
λ→−∞

∆(λ)

∆̂(λ)
= 1, lim

λ→−∞

∞∏
n=1

(
1 +

λn+1 − λ0
n

λ0
n − λ

)
= 1,

and hence

C = −c0πλ0λ1

∞∏
n=1

λn+1

λ0
n

.

Substituting this into (3.97), we get (3.95).J

Remark 3.13. Analogous results are valid for boundary value problems with other types
of boundary conditions but the same jump conditions. Let us state some of these results
for one of them which will be used below.

Consider the discontinuous boundary value problem L1 for equation (1.1) with the
boundary conditions y(0) = V (y) = 0 and jump conditions (1.4)–(1.7). The eigenvalues
{µn}n≥0 of L1 are algebraically and geometrically simple and coincide with the zeros of
characteristic function ∆1(λ) := ψ(0, λ) and

∆1(λ) = c1(λ− µ0)

∞∏
n=1

µn − λ
µ0
n−1

, (3.99)

tn :=
√
µn = t0n−1 +

ωn1

πn
+
ζn1

n
, {ζn1} ∈ l2, (3.100)

where {µ0
n = (t0n)2}n≥0 is the set of zeros of the entire function

∆1,0(λ) = α+β+ cos sπ − α−β+ cos s(π − 2ξ1)

−α+β− cos s(π − 2ξ2) + α−β− cos s(π − 2ξ2 + 2ξ1),

and
c1 = α+β+ − α−β+ − α+β− + α−β−,

ωn,1 = −
(
w1,1 sin t0n−1π + w2,1 sin t0n−1(π − 2ξ1) + w3,1 sin t0n−1(π − 2ξ2)

+w4,1 sin t0n−1(π − 2ξ2 + 2ξ1)
)
/
(

2t0n−1

.
∆1,0(λ0

n−1)
)
,

w1,1 = α+β+

(
H +

1

2

∫ π

0
q(t)dt

)
+

1

2

(
α+β2 + β+α2

)
,

w2,1 = α−β+

(
−H − 1

2

∫ π

ξ1

q(t)dt+

∫ ξ1

0
q(t)dt

)
− 1

2

(
α−β2 + β+α2

)
,

w3,1 = α+β−
(
−H +

1

2

∫ π

ξ2

q(t)dt−
∫ π

ξ2

q(t)dt

)
− 1

2

(
α+β2 − β−α2

)
,

w4,1 = α−β−
(
H +

1

2

∫ π

0
q(t)dt−

∫ ξ2

ξ1

q(t)dt

)
+

1

2

(
α−β2 − β−α2

)
.
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4. Weyl solution and Weyl function

Let the function Φ(x, λ) be the solution of equation (1.1) which satisfy the boundary
conditions U(Φλ) = 1 and V (Φλ) = 0 and jump conditions (1.4)–(1.7). The function
Φ(x, λ) is called the Weyl solution of the discontinuous boundary value problem L.

Let S(x, λ) be the solution of equation (1.1) which satisfy the initial conditions S(0, λ) =
0, S′(0, λ) = 1 and jump conditions (1.4)–(1.7). Then the function ψ(x, λ) can be repre-
sented as follows:

ψ(x, λ) =
(
ψ′(0, λ)− hψ(0, λ)

)
S(x, λ) + ψ(0, λ)ϕ(x, λ)

or

−ψ(x, λ)

∆(λ)
= S(x, λ)− ψ(0, λ)

∆(λ)
ϕ(x, λ).

Denote

M(λ) = −ψ(0, λ)

∆(λ)
. (4.1)

It is clear that

Φ(x, λ) = S(x, λ) +M(λ)ϕ(x, λ), (4.2)

M(λ) = −∆1(λ)

∆(λ)
, (4.3)

W (ϕλ,Φλ;x) ≡ 1. (4.4)

The function M(λ) = Φ(0, λ) is called the Weyl function of the problem L. The notion of
the Weyl function introduced here is a generalization of the Weyl function for the classical
Sturm-Liouville operators (see [13, 24]). Since ∆(λ) and ∆1(λ) have no common zeros,
it follows from (4.3) that M(λ) is a meromorphic function with poles {λn}n≥0 and zeros
{µn}n≥0.

Theorem 4.1. The following representation holds:

M(λ) =
∞∑
n=0

1

γn(λ− λn)
. (4.5)

Proof. Consider the contour integral

JN (λ) =
1

2πi

∫
ΓN

M(µ)

λ− µ
dµ, λ ∈ intΓN ,

where the contour ΓN is defined by (3.71) and assumed to have the counterclockwise
circuit. Since ∆1(λ) = ψ(0, λ), it follows from (3.29) that

|∆1(λ)| ≤ C|s|2e|τ |π. (4.6)
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Also, by virtue of (3.69) and (3.73) we get for sufficiently large values of |s|,

|∆(λ)| ≥ Cδ|s|3e|τ |π, s ∈ Gδ. (4.7)

Now using (4.3), (4.6) and (4.7), we conclude that for sufficiently large values of |s|,

|M(λ)| ≤ Cδ
|s|
, s ∈ Gδ. (4.8)

Moreover, using (3.10), (3.18) and (4.3), we calculate

Res
λ=λn

M(λ) = −∆1(λn)
.
∆(λn)

= − kn
.
∆(λn)

=
1

γn
. (4.9)

In view of (4.8), limN→∞ JN (λ) = 0. By virtue of (4.9) and residue theorem [11, p.112],
we have

JN (λ) = −M(λ) +
N∑
n=0

1

γn(λ− λn)
,

and consequently, (4.5) is proved.J

5. Inverse problem

In this section, we investigate the inverse problem of reconstruction of the discontinuous
boundary value problem L from its spectral characteristics. We consider three statements
of the inverse problem of reconstruction of the problem L from the Weyl function, from
the so-called spectral data {λn, γn}n≥0, and from two spectra {λn, µn}n≥0.

Let us prove the uniqueness theorems for the solutions of the above mentioned inverse
problems. For this purpose we agree that together with L we consider a discontinuous
boundary value problem L̃ of the same form but with different coefficients q̃(x), h̃, H̃, H̃1,
H̃2, α̃1, α̃2, β̃1, β̃2, and discontinuity points ξ̃1 and ξ̃2. Every where below if a certain
symbol a denotes an object related to L, then the corresponding symbol ã denotes the
analogous object related to L̃.

Theorem 5.1. If M(λ) = M̃(λ), then L = L̃. Thus, the specification of the Weyl function
M(λ) uniquely determines L.

Proof. Denote J0 = J ∩ J̃ where J = [0, ξ1)∪ (ξ1, ξ2)∪ (ξ2, π]. Let us define the matrix
P (x, λ) = [Pjk(x, λ)]j,k=1,2, x ∈ J0 by the formula

P (x, λ)

[
ϕ̃(x, λ) Φ̃(x, λ)

ϕ̃′(x, λ) Φ̃′(x, λ)

]
=

[
ϕ(x, λ) Φ(x, λ)
ϕ′(x, λ) Φ′(x, λ)

]
. (5.1)

Using (4.4) and (5.1) we calculate for j = 1, 2:
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 Pj1(x, λ) = ϕ(j−1)(x, λ)Φ̃′(x, λ)− Φ(j−1)(x, λ)ϕ̃′(x, λ),

Pj2(x, λ) = Φ(j−1)(x, λ)ϕ̃(x, λ)− ϕ(j−1)(x, λ)Φ̃(x, λ),
(5.2)

 ϕ(x, λ) = P11(x, λ)ϕ̃(x, λ) + P12(x, λ)ϕ̃′(x, λ),

Φ(x, λ) = P11(x, λ)Φ̃(x, λ) + P12(x, λ)Φ̃′(x, λ).
(5.3)

It follows from (4.2), (4.4) and (5.2) that

P11(x, λ) = 1 +
ψ(x, λ)

∆(λ)
(ϕ̃′(x, λ)− ϕ′(x, λ)) +

ϕ(x, λ)

∆(λ)
(ψ′(x, λ)− ψ̃′(x, λ))

+ϕ(x, λ)ϕ̃′(x, λ)

(
1

∆(λ)
− 1

∆̃(λ)

)
,

P12(x, λ) =
1

∆(λ)

(
ϕ(x, λ)ψ̃(x, λ)− ψ(x, λ)ϕ̃(x, λ)

)
+ϕ(x, λ)ϕ̃(x, λ)

(
1

∆(λ)
− 1

∆̃(λ)

)
.

Denote G0
δ = Gδ ∩ G̃δ. By virtue of (3.20)–(3.22), (3.29)–(3.31) and (4.7), this yields

|P11(x, λ)− 1| ≤ Cδ
|s|
, |P12(x, λ)| ≤ Cδ

|s|
, s ∈ G0

δ . (5.4)

for sufficiently large values of |s|. On the other hand according to (4.2) and (5.2),

P11(x, λ) = ϕ(x, λ)S̃′(x, λ)− S(x, λ)ϕ̃′(x, λ) + (M̃(λ)−M(λ))ϕ(x, λ)ϕ̃′(x, λ),

P12(x, λ) = S(x, λ)ϕ̃(x, λ)− ϕ(x, λ)S̃(x, λ) + (M(λ)− M̃(λ))ϕ(x, λ)ϕ̃(x, λ).

Since M(λ) ≡ M̃(λ), it follows that for each fixed x ∈ J0, the functions P11(x, λ) and
P12(x, λ) are entire in λ. With the help of (5.4) and well-known Liouville’s theorem, this
yields P11(x, λ) ≡ 1, P12(x, λ) ≡ 0. Substituting into (5.3), we get ϕ(x, λ) ≡ ϕ̃(x, λ),
Φ(x, λ) ≡ Φ̃(x, λ) for all x ∈ J0 and λ. Taking this into account, from (1.1) we get
q(x) = q̃(x) a.e. on (0, π), from (3.1) and (3.4) we obtain h = h̃, H = H̃, H1 = H̃1,
H2 = H̃2, and from (1.4)–(1.7) we conclude that αi = α̃i, βi = β̃i, ξi = ξ̃i (i = 1, 2).
Consequently, L = L̃.J

Theorem 5.2. If λn = λ̃n and γn = γ̃n for all n ≥ 0, then L = L̃. Thus the problem L
uniquely defined by spectral data {λn, γn}n≥0.

Proof. If λn = λ̃n and γn = γ̃n for all n ≥ 0, then from (4.5), we get that M(λ) = M̃(λ).
Hence by virtue of Theorem 5.1, this implies L = L̃.J
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Theorem 5.3. If λn = λ̃n and µn = µ̃n for all n ≥ 0, then L = L̃. Thus the specification
of two spectra {λn, µn}n≥0 uniquely determines L.

Proof. According to Theorem 3.12 and Remark 3.13, the sets {λn}n≥0 and {µn}n≥0

coincide with the set of zeros of the functions ∆(λ) and ∆1(λ), respectively. If λn = λ̃n
and µn = µ̃n for all n ≥ 0, then from (3.95) and (3.99) we get

∆̃(λ)

∆(λ)
=
c̃0

c0
,

∆̃1(λ)

∆1(λ)
=
c̃1

c1
. (5.5)

On the other hand using (3.29) and (3.69) we obtain

lim
Im s→∞

∆̃(λ)

∆(λ)
=
α̃+β̃+

α+β+
for arg s =

π

2
, (5.6)

lim
Im s→∞

∆̃1(λ)

∆1(λ)
=
α̃+β̃+

α+β+
for arg s =

π

2
. (5.7)

Comparing with (5.5), this yields
c̃0

c0
=
c̃1

c1
.

Together with (4.3) and (5.5) this implies that M(λ) = M̃(λ). Therefore, by Theorem 5.1
we conclude that L = L̃.J

Remark 5.4. By virtue of (4.3), the specification of two spectra {λn, µn}n≥0 is equiva-
lent to the specification of the Weyl function M(λ). On the other hand, it follows from
(4.5) that the specification of the Weyl function M(λ) is equivalent to the specification of
the spectral data {λn, γn}n≥0. Consequently, three statements of the inverse problem of
reconstruction of the problem L from the Weyl function, from the spectral data and from
two spectra are equivalent.
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