
Azerbaijan Journal of Mathematics
V. 4, No 1, 2014, January
ISSN 2218-6816

On the 2-Generator p-Groups with Non-cyclic Commu-

tator Subgroup
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Abstract. A complete classification of p-groups of every nilpotency class is given by R.J. Miech
in 1975 where the commutator subgroup is cyclic. M.R. Bacon in 1993 and L.-C. Kappe in 1999
studied and classified 2-generated p-groups based on the nilpotency 2 groups which have the cyclic
commutator subgroups. In this paper, we attempt to study the finite 2-generator p-groups of
nilpotency class 3, where the commutator subgroup is non-cyclic, and identify the structure of one
class of such p-groups for every prime p 6= 2, 3.
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1. Introduction

Most of the effort of finite group theory has been directed at the classification of p-
groups and there are still many outstanding problems in this area. In the present paper, we
want to concentrate on 2-generator p-groups of nilpotency class 3, where the commutator
subgroup is non-cyclic. First of all we give a short history of the finite 2-generator p-groups
of class 2. In 1975, Miech classified all finite 2-generator p-groups with cyclic commutator
subgroup for odd p [6]. In 1989, Trebenko attempted to classify all 2-generator groups
of nilpotency class two, along very different lines from those of Miech [8]. This attempt
was flawed. Later, Bacon and Kappe tried to correct Trebenko’s paper to produce a
classification of finite 2-generator p-groups of class two, where p is an odd prime, but their
classification was still incomplete [2]. In 1999, Kappe, Visscher, and Sarmin extended the
classification to the case of 2-groups, but again with incomplete descriptions [4]. Finally
the classification of infinite 2-generator groups of class two has been done by Sarmin, also
along the same lines [7]. All of these classifications were still incomplete until recently
in [1], a new classification for the 2-generator p-groups of nilpotency class two is given
that corrects and simplifies previous classifications for these groups. These classifications
have been used to compute the nonabelian tensor squares of these groups (see [2, 4, 7])
and determine those that are capable (see [3, 5]). All of these attempts consider cyclic
commutator subgroups.
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The goal of this paper is to study the finite 2-generator p-groups of nilpotency class
3 with the non-cyclic commtator subgroups and identify the structure of one class where
p 6= 2, 3. Our notation are fairly simple and standard. Let G be a group. The commutator
[x, y] is defined by x−1y−1xy, for the elements x and y of G. The group generated by
all commutators [x, y], where x, y ∈ G, is denoted by [G,G] or G′. We define the lower
central series

γ1(G) ≥ γ2(G) ≥ ... ≥ γi(G) ≥ ...

of G inductively as follows:

γ1(G) = G, γ2(G) = [G,G], γi(G) = [γi−1(G), G] (i = 3, 4, ..).

If there exists an integer c such that γc+1(G) = 1, then G is said to be nilpotent, and if c
is the smallest such integer, c is called the nilpotency class of G. Also, if x1, x2, ..., xn are
elements of G we define

[x1, x2, ..., xn] = [[x1, x2, ..., xn−1], xn] (n = 3, 4, ...).

2. Preliminary Results

In this section, we prove some results concerning the nilpotent groups of class 3. The
first lemma is well-known.

Lemma 1. Let G be a group and x, y, z ∈ G. Then

(i) [xy, z] = [x, z][x, z, y][y, z].

(ii) [x, yz] = [x, z][x, y][x, y, z].

(iii) [x−1, y] = ([x, y]−1)x
−1

= [x, y]−1[[x, y]−1, x−1].

(iv) [x, y−1] = ([x, y]−1)y
−1

= [x, y]−1[[x, y]−1, y−1].

Lemma 2. Let G be a nilpotent group of class 3 and x, y, z ∈ G. Then

(i) [G′, G] ≤ Z(G).

(ii) [xy, z] = [x, z][y, z][x, z, y] and [x, yz] = [x, z][x, y][x, y, z].

(iii) [x, y, z]−1 = [y, x, z].

Proof. It may be easily proved by using the previous lemma and the nilpotency class
of G. J

Lemma 3. Let G be a nilpotent group of class 3 and x, y, z ∈ G. Then for every positive
integers m,n and k,

(i) [x, y, z]n = [[x, y]n, z].

(ii) [x, y, z]mnk = [xm, yn, zk].

(iii) [xm, yn] = [x, y]mn[x, y, x]n(
m
2 )[x, y, y]m(

n
2).

(iv) (xy)n = xnyn[y, x](
n
2)[y, x, x]

n(n−1)(n−2)
6 [y, x, y]

n(n−1)(2n−1)
6 .
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Proof. We can use the inductive method to prove the lemma. For example, by assuming
(i), (ii) and (iii), we give the complete proof of (iv). Obviously, the result is true for n = 1.
Assume that it is true for n ≥ 1. Then

(xy)n+1 = (xy)n(xy)

= xnyn[y, x](
n
2)[y, x, x]

n(n−1)(n−2)
6 [y, x, y]

n(n−1)(2n−1)
6 (xy)

= xnyn([y, x](
n
2)x)y[y, x, x]

n(n−1)(n−2)
6 [y, x, y]

n(n−1)(2n−1)
6

= xn(ynx)[y, x](
n
2)y[y, x, x]

n(n−1)(n−2)
6

+(n2)[y, x, y]
n(n−1)(2n−1)

6

= xn+1yn[y, x](
n
2)+ny[y, x, x]

(n+1)n(n−1)
6 [y, x, y]

n(n−1)(2n−1)
6

+(n2)

= xn+1yn([y, x](
n+1
2 )y)[y, x, x]

(n+1)n(n−1)
6 [y, x, y]

(n+1)n(n−1)
3

= xn+1yn+1[y, x](
n+1
2 )[y, x, x]

(n+1)n(n−1)
6 [y, x, y]

(n+1)n(n−1)
3

+(n+1
2 )

= xn+1yn+1[y, x](
n+1
2 )[y, x, x]

(n+1)n(n−1)
6 [y, x, y]

(n+1)n(2n+1)
6 .

J

The following two lemmas are directly for the groups of nilpotency class 3 and some
parts of the assertions are almost similar to those of used for the groups of nilpotency
class 2 in [4].

Lemma 4. Let G = 〈a, b〉 be a nilpotent group of nilpotency class 3. Then
(i) G′ = 〈[a, b], [a, b, a], [a, b, b]〉.
(ii) if n = l.c.m(|[a, b, a]|, |[a, b, b]|), then 〈[a, b]〉 ∩ Z(G) = 〈[a, b]n〉.
(iii) if n = l.c.m(|[a, b]|, |[a, b, a]|, |[a, b, b]|) and n is odd number, then 〈a〉∩Z(G) = 〈an〉

and 〈b〉 ∩ Z(G) = 〈bn〉.

Proof. (i) Using previous lemma and the relations [b, a, a] = [a, b, a]−1 and [b, a, b] =
[a, b, b]−1, we get the validity of this assertion.

(ii) Let 〈[a, b]〉∩Z(G) = 〈[a, b]k〉, where k ∈ N. Since [a, b]k ∈ Z(G), we have [a, b, a]k =
[a, b, b]k = 1. Thus n ≤ k. On the other hand, [a, b, a]n = [a, b, b]n = 1. This implies
[a, b]n ∈ Z(G). Consequently, k ≤ n.

(iii) This is proved similar to (ii). J

Lemma 5. Let G = 〈a, b〉 be a p-group of nilpotency class 3.

(i) If l.c.m(|[a, b, a]|, |[a, b, b]|) = pσ and 〈a〉 ∩G′ = 〈ap
k
〉, then k ≥ σ.

(ii) If l.c.m(|[a, b, a]|, |[a, b, b]|) = pσ, |[a, b]| = pγ and 〈[a, b, a], [a, b, b]〉 ≤ 〈[a, b]〉, then
γ ≥ 2σ.

Proof. (i) As ap
k
∈ G′, we have [ap

k
, b] ∈ Z(G). So [a, b, a]p

k
= [a, b, b]p

k
= 1. Thus

k ≥ σ.
(ii) We know that [a, b, a] and [a, b, b] are the central elements. Now by using the hy-
pothesis, we have 〈[a, b, a], [a, b, b]〉 ≤ Z(G) ∩ 〈[a, b]〉 = 〈[a, b]p

σ
〉. This implies γ ≥ 2σ.

J



76 B. Ahmadi, H. Doostie

Due to the following lemma, the cases p ≥ 5, p = 2 and p = 3 have to be handled
differently.

Lemma 6. Let G be a finite 2-generator p-group of nilpotency class 3. Further, let b ∈ G

be an element of minimal order not in Φ(G), the Frattini subgroup of G, and a be an
element of minimal order such that 〈a, b〉 = G. If 〈a〉 ∩ 〈b〉 6= 1, then p = 2 or p = 3.

Proof. Choose a and b as in the hypothesis. Let p 6= 2, 3 and 〈d〉 = 〈a〉 ∩ 〈b〉. Then
there exist integers u and v such that d = au = bv. Since G is not cyclic, we have
u = spi, v = tpj, with i, j ∈ N, and (s, p) = (t, p) = 1. Now |b| ≤ |a| implies j ≤ i. Set
b1 = a−spi−j

bt. Since (t, p) = 1, it follows that 〈b1, a〉 = G. Now by Lemma 3 we have

b
pj

1 = (a−spi−j

bt)p
j

= a−spibtp
j

[bt, a−spi−j

](
pj

2 )[bt, a−spi−j

, a−spi−j

]
pj (pj−1)(pj−2)

6

[bt, a−spi−j

, bt]
pj (pj−1)(2pj−1)

6

= [bt, a−spi−j

](
pj

2 )[btp
j

, a−spi−j

, a−spi−j

]
(pj−1)(pj−2)

6

[bt, a−spi , bt]
(pj−1)(2pj−1)

6

= [bt, a−spi−j

]p
j(p

j
−1
2

)

= ([bt, a−spi ][bt, a−spi−j

, a−spi−j

]−(
pj

2 ))
pj−1

2

= [bt, a−spi−j

, a−spi−j

]−pj(p
j
−1
2

)2

= [btp
j

, a−spi−j

, a−spi−j

]−(p
j
−1
2

)2

= 1.

By choice of b, |b| ≤ |b1|, and then bp
j
= 1. Thus d = 1. J

3. Result

In this section, let G be a finite 2-generator p-group of nilpotency class 3. Choose b

an element of minimal order not in Φ(G) and a an element of minimal order such that
〈a, b〉 = G. Also, let p 6= 2, 3. By Lemma 6, 〈a〉 ∩ 〈b〉 = 1. So the following cases occur:

〈b〉 ∩G′ = 1, 〈a〉 ∩G′ = 1, (1)

〈b〉 ∩G′ = 1, 〈a〉 ∩G′ = G′, (2)

〈b〉 ∩G′ = 1, 1 6= 〈a〉 ∩G′ ⊂ G′, (3)

〈a〉 ∩G′ = 1, 〈b〉 ∩G′ = G′, (4)

〈a〉 ∩G′ = 1, 1 6= 〈b〉 ∩G′ ⊂ G′, (5)

1 6= 〈a〉 ∩G′ ⊂ G′, 1 6= 〈b〉 ∩G′ ⊂ G′. (6)
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In the cases (2) and (4), the commutator subgroup is cyclic and they have been surveyed
by R.J. Miech in [6]. Interchanging a and b in (5) gives the case (3). So, three cases-(1),
(3) and (6) remain. We here investigate the case (1) and identify the structure of group
G.

Proposition 1. By the above hypothesis, if 〈a〉 ∩G′ = 〈b〉 ∩G′ = 1, then

G ∼= (G′
o 〈a〉)o 〈b〉,

where, |a| = pα, |b| = pβ, |[a, b]| = pγ , |[a, b, b]| = pδ1 , |[a, b, a]| = pδ2 , and the integers
α, β, γ, δ1 and δ2 satisfy the conditions α ≥ β ≥ γ ≥ 1, γ ≥ δ1, γ ≥ δ2 and δ1 + δ2 ≥ 1.

Proof. Let |a| = pα, |b| = pβ, |[a, b]| = pγ , |[a, b, b]| = pδ1 and |[a, b, a]| = pδ2 . Then
by choosing b (b is of minimal order), we get α ≥ β. Using Lemma 3(iii), we deduce

that [a, b]p
β

= [a, bp
β
][a, b, b]−(

pβ

2 ) = [a, b, bp
β
]−(p

β
−1
2

) = 1. So, β ≥ γ. Since G′ 6= 1
we have γ ≥ 1 and therefore, α ≥ β ≥ γ ≥ 1. Again using Lemma 3(i), we have
[a, b, b]p

γ
= [[a, b]p

γ
, b] = 1 and [a, b, a]p

γ
= [[a, b]p

γ
, a] = 1 and so, γ ≥ δ1 and γ ≥ δ2. The

assertion δ1 + δ2 ≥ 1 comes from the nilpotency class of G. The decomposition of G in
the form given is now quite easy by considering the properties of a and b. J

We give two examples of p-groups whose the commutator subgroup is non-cyclic and
which satisfy the above proposition.

Example 1. Suppose p 6= 2, 3 and

G = 〈a, b, c, d|ap
2
= bp = cp = dp = 1, [b, a] = c, [c, a] = d,

[a, d] = [b, c] = [b, d] = [c, d] = 1〉.

The group G is of order p5 and nilpotency class 3. By the relations of the group, we can
see that G′ ∼= Zp × Zp. So, G′ is non-cyclic. Also, 〈a〉 ∩ G′ = 〈b〉 ∩ G′ = 1. Therefore,
G ∼= (G′

o 〈a〉)o 〈b〉.

Example 2. Suppose p 6= 2 and

G = 〈a, b, c, d, e|ap = bp = cp = dp = ep = 1, [a, b] = c, [c, a] = d, [c, b] = e,

[a, d] = [a, e] = [b, d] = [b, e] = [c, d] = [c, e] = [d, e] = 1〉.

This group is of order p5 and nilpotency class 3. It is easily seen that G′ ∼= Zp × Zp × Zp

(G′ is non-cyclic) and 〈a〉 ∩G′ = 〈b〉 ∩G′ = 1. Hence, G ∼= (G′
o 〈a〉)o 〈b〉.

Acknowledgement. The authors would like to express their appreciations to referee
for the valuable and positive comments regarding this paper.



78 B. Ahmadi, H. Doostie

References

[1] A. Ahmad, A. Magidin and R.F. Morse. Two generator p-groups of nilpotency class
two and their conjugacy classes. Submitted to Communication in Algebra.

[2] M.R. Bacon and L.-C. Kappe. The nonabelian tensor square of a 2-generator p-group
of class 2. Arch. Math., 61: 508-516, 1993.

[3] M.R. Bacon and L.-C. Kappe. On capable p-groups of nilpotency class two. Illinois
J. Math., 47: 49-62, 2003.

[4] L.-C. Kappe, M.P. Visscher and N.H. Sarmin. Two-generator two-groups of class two
and their nonabelian tensor squares. Glasg. Math. J., 41: 417-430, 1999.

[5] A. Magidin. Capable 2-generator 2-groups of class two. Comm. Algebra, 34: 2183-
2193, 2006.

[6] R.J. Miech. On p-groups with a cyclic commutator subgroup. J. Austral. Math. Soc.,
20(2): 178-198, 1975.

[7] N. Sarmin. Infinite two-generator groups of class two and their non-abelian tensor
squares. Int. J. Math. Sci., 32(10): 615-625, 2002.

[8] D.Y. Trebenko. Nilpotent groups of class two with two generators (Russion). Current
Analysis and its Applications (Naukova Dumka, Kiev.), 228: 201-208 1989.

Bahram Ahmadi
Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran
E-mail: b.ahmadi.math@gmail.com, ahmadi.math@yahoo.com

Hossein Doostie
Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box
14515/1775, Iran
E-mail: doostih@gmail.com

Received 14 June 2012
Accepted 26 September 2013


