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1. Introduction

The present report is based on the joint paper Diophantine Algebraic Geometry for

MV-Algebras: Basic Issues, by L. P. Belluce, A. Di Nola, G. Lenzi.
We present a preliminary study of applying the concepts of algebraic geometry over

fields to the theory of MV-algebras. According to [2], rational polyhedra are the genuine
algebraic varieties of the formulas of  Lukasiewicz Logic, in a precise sense: zerosets of
McNaughton functions coincide with rational polyhedra. Now, McNaughton functions
are functions from [0, 1]n [0, 1], so that in the theory of [2], the MV algebra [0, 1] plays
a fundamental role. On the other hand, there are reasons to be interested in other MV
algebras, because every MV algebra can be viewed as the Lindenbaum algebra of some
many-valued logic, and as such, it has logical relevance. This is why we try in this paper
to generalize somewhat the theory of [2] to MV algebras as general as possible.

We proceed along lines similar to Plotkin [4].
We note that in algebraic geometry the central notion is the one of polynomial. One

has three possibilities:

• considering coefficient-free algebraic geometry; this allows one to evaluate polyno-
mials in arbitrary fields;

• considering Diophantine algebraic geometry: this means that the field where coeffi-
cients are taken coincides with the field where polynomials are evaluated;

• considering general, non-Diophantine algebraic geometry, where polynomials take
coefficients in a field K and are evaluated in an extension L of K.
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It turns out that all these three possibilities can be extended to universal algebra,
and this is done in [4]. Since universal algebra subsumes the equational theory of MV
algebras, we can consider what happens in universal algebraic geometry (coefficient-free,
Diophantine or non-Diophantine) over MV algebras.

2. MV Algebras and Polynomials

For all notions concerning MV algebras, we refer the readers to [1]. Here we just give
the definition.

An MV-algebra is a structure (A,⊕,∗ , 0), where ⊕ is a binary operation, ∗ is a unary
operation and 0 is a constant such that the following axioms are satisfied for any a, b ∈ A:

i) (A,⊕, 0) is an abelian monoid,

ii) (a∗)∗ = a,

iii) 0∗ ⊕ a = 0∗

iv) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

On an MV-algebra A we define the constant 1 and the auxiliary operation � as follows:

v) 1 := 0∗

vi) a� b := (a∗ ⊕ b∗)∗

for any a, b ∈ A.

Recall from [1] that one can construct two functors Γ and Ξ from the category of
MV algebras to the category of lattice ordered groups with strong unit (`u-groups) and
conversely, so that the pair (Γ,Ξ) is an equivalence.

2.1. Truncated Functions and a Generalized McNaughton Theorem

The classical McNaughton Theorem [1] implies that a certain space of functions can
be represented by two term algebras: truncated infima of suprema of affine functions from
[0, 1]n to R on one hand, and MV polynomials on [0, 1] on the other hand. This idea
can be extended to any MV algebra A, so to relate truncated infima of suprema of affine
functions from An to Ξ(A) (where Ξ is the inverse Mundici functor; see [1]), and MV
polynomial functions on A.

Let A be an MV algebra with associated `u-group (G,u). A (G,u)-affine term (with in-
teger slopes) from An to G is a term (in the language of groups) of the form f(x1, . . . , xn) =
g0+m1x1+. . .+mnxn, where g0 ∈ G and m1, . . . ,mn ∈ Z. Note that we identify a variable
xi with the corresponding projection.

Let (G,u) be an `u-group associated to an MV algebra A. For an element g ∈ G, we
let ρ(g) = (g ∨ 0) ∧ u. This defines a function ρ : G → A.
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A (G,u)-term is a term (in the language of `-groups) of the form
∨

i

∧
j fij(x), where

fij is affine, that is, a finite infimum of finite suprema of affine terms. A truncated (G,u)
term is a (G,u)-term of the form ρ ◦ t, where t is a (G,u)-term.

We let TTn(G,u) be the set of all truncated (G,u) terms in n variables.

A (G,u)-function is any function from An to the corresponding group G defined by
a (G,u)-term. A (G,u) affine function is one defined by a (G,u)-affine term. A (G,u)
truncated function is one defined by a truncated (G,u)-term.

We let TFn(G,u) be the set of all truncated (G,u) functions in n variables.

We note that the set TFn(G,u) of truncated (G,u) functions is an MV algebra. In
fact, we can define t⊕ u = ρ ◦ (t + u) and ¬t = u− t. The set TTn(G,u) also becomes an
MV algebra, but only modulo the axioms of MV algebra (or modulo larger congruences).

Since the inverse Mundici functor Ξ gives a bijection between MV algebras and `u-
groups, we can write without ambiguity TFn(A) for TFn(Ξ(A)). This notation will be
useful in stating the next theorem, which clarifies the relation between (G,u)-terms and
MV polynomials:

Theorem 1. Let A be an MV algebra, with associated `u group (G,u). Then polynomials

and truncated (G,u)-terms define the same functions from An to A.

3. Algebraic Sets

In this section we focus on Diophantine algebraic geometry.

Let A be an MV algebra and n be a positive integer and let A[x1, . . . , xn] be the
absolutely free term algebra over A and {x1, . . . , xn}.

Definition 1. Let A be an MV-algebra. Let S ⊆ A[x1, . . . , xn], S 6= ∅. Consider the set

{(a1, . . . , an) ∈ An | p(a1, . . . . an) = 0, ∀p(x1, . . . , xn) ∈ S}. Denote this set by V (S),
called the algebraic set determined by S.

For a given k-tuple (y1. . . . , yk) we will often write ȳ for (y1. . . . , yk), the arity to be
understood in context.

Clearly if we let I = id(S), the ideal of A[x1, . . . , xn] generated by S, then V (I) =
V (S). Thus algebraic sets are determined by ideals.

Note that for a given non-empty subset S ⊆ A[x1, . . . , xn] we may have V (S) = ∅.
This would happen iff for each ā ∈ An there is a p ∈ S such that p(ā) 6= 0.

Definition 2. Call an ideal J ⊆ A[x1, . . . , xn] singular if V (J) = ∅. Otherwise call J
non-singular.

If p(x1, . . . , xn) ∈ A[x1, . . . , xn], and ord(p) < ∞, then it cannot have a zero. Also, if
a ∈ A− {0} has infinite order, then p(x1, . . . , xn) = (a ∧ q(x̄)) + (a ∧ (q(x̄)∗) has infinite
order but also has no zeros for any q(x̄) ∈ A[x̄]. Moreover, if Â is any MV- extension of
A, then it’s still true that the above p(x̄) ∈ Â[x̄] will have no zero in Â.
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Definition 3. Suppose we have a non-empty X ⊆ An. Let I(X) = {p ∈ A[x1, . . . , xn] |
p(ȳ) = 0, ∀ȳ ∈ X} where ȳ = (y1, . . . , yn), yi ∈ A. Then I(X) is an ideal of

A[x1, . . . , xn].

For a given ideal J ⊆ A[x1, . . . , xn] we clearly have that J ⊆ I(V (J)) provided
V (J) 6= ∅. Note that for X 6= ∅ we always have 0 ∈ I(X).

3.1. Point ideals and point radicals

Call an ideal J ⊆ A[x̄] a point ideal if for some ā = (a1, . . . , an) ∈ An we have J = I(ā).

Note that if A is linearly ordered, then each I(ā) is a prime ideal; if A is simple, each
I(ā) is a maximal ideal.

Lemma 1. Each point ideal is non-singular, non-zero and proper.

Proof. Given an ā = (a1, . . . , an), let p(x1, . . . , xn) = a1x
∗

1 ⊕ · · · ⊕ anx
∗

n. Then
p 6= 0 and p(a1, . . . , an) = 0. Consequently, ā ∈ V (I(ā)) so I(ā) is non-singular. Clearly
1 /∈ I(ā), thus I(ā) 6= A[x̄].J

We consider the fixpoints of the adjunction (I, V ):

Proposition 1. For a non-singular ideal J ⊆ A[x1, . . . , xn], we have I(V (J)) =
⋂

ā∈V (J) I(ā).

For an ideal I ⊆ A[x̄] let pt

√
I =

⋂{I(ā) | I ⊆ I(ā)}. We call pt

√
I the point radical of

I. Note it is an ideal as well.

Observe if J is non-singular so that V (J) 6= ∅ then there is an ā ∈ V (J). Thus for all
p ∈ J we have p(ā) = 0. Hence J ⊆ I(ā). Thus J ⊆ pt

√
J .

Corollary 1. For a non-singular ideal J, I(V (J)) = pt

√
J .

The following Nullstellensatz theorem holds:

Theorem 2. The ideals J such that I(V (J)) = J are exactly the point-radical ideals.

4. Coordinate algebras

Here again we are in Diophantine geometry.

Definition 4. Let Z ⊆ An be a non-empty algebraic set. By the co-ordinate MV-algebra
of Z we mean the MV-algebra A[x̄]/I(Z).

Now let Z = V (J) for a non-singular ideal J . Thus I = I(V (J)) = pt

√
J . Then,

Proposition 2. For a non-singular ideal J the co-ordinate MV-algebra of V (J) is A[x̄]/pt
√
J .

Let MVA = {A[x1, . . . , xn]/J | J = pt

√
J, n = 0, 1, 2 . . .}. We consider the set MVA

as a full subcategory of MV algebras.
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Definition 5. Let Z1 ⊆ An, Z2 ⊆ Am be algebraic sets. A mapping φ : Z1 → Z2 is

called a polynomial map iff there are polynomials p1, . . . , pm ∈ A[x1, . . . , xn] such that

φ(a1, . . . , an) = (p1(a1, . . . , an), . . . , pm(a1, . . . , an)) for every (a1, . . . , an) ∈ Z1.

Let Z(A) be the collection of all algebraic subsets of An. Then with polynomial maps
as morphisms, Z(A) becomes a category.

We have the following duality:

Theorem 3. The categories MVA and Z(A) are dually isomorphic.

5. Logic of polynomials

The completeness theorem of  Lukasiewicz infinite valued logic can be phrased as fol-
lows: if the function [σ] equals 1 on [0, 1]n, then [σ] = 1 in the Lindenbaum algebra.

We can apply this idea to our context and we get what we call polynomial completeness.
We introduce the following notion:

Definition 6. An MV algebra A is polynomially complete if for every n, the only polyno-

mial in n variables inducing the zero function on An is the zero polynomial.

We do not have a complete characterization of polynomially complete MV algebras,
however in this paper we give one for MV chains.

Theorem 4. Let C be an MV chain. The following are equivalent:

1. C is polynomially complete;

2. every polynomial p ∈ C[x1, . . . , xn] which induces the zero function on C induces the

zero function on DH(C), where DH(C) is the divisible hull of C.

6. The finitely presented case

In [2], a study of finitely presented MV algebras is exposed, based on rational polyhedra
in [0, 1]n. We would like to extend the results of [2] as far as possible in general MV
algebras. To this aim we translate the framework of [2] into our more general situation,
where:

• formulas φ are replaced by polynomials p,

• polynomials evaluating to zero are preferred to formulas evaluating to one (this
convention is somewhat a mismatch between algebraic geometry and logic),

• theories Φ are replaced by ideals J ,

• finitely axiomatizable theories are replaced by principal ideals,

• polynomials may have constants out of an arbitrary MV algebra C,
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• the function Mod on theories is replaced by the function V on ideals of polynomials,

• the function Th on algebraic subsets of [0, 1]n is replaced by the function I on
algebraic subsets of Cn.

We can ask questions related to composed functions like Th(Mod(T )). Wójcicki’s
Theorem implies that if T is a finitely axiomatized theory in Lukasiewicz logic, then
Th(Mod(T )) coincides with T . In algebraic terms, this corresponds to I(V (p)) = id(p)
for every polynomial p, which we called strong completeness.

Since Wójcicki’s Theorem does not help us when polynomials may have constants, we
could consider weakenings of strong completeness. For instance, for what algebras the
ideal I(V (p)) is principal for every polynomial p? Logically, this corresponds to stating
that for all finitely axiomatizable theory T , the theory Th(Mod(T )) is finitely axiomatized.

More generally, what are the ideals J such that I(V (J)) is principal? This corresponds
to considering the theories T such that Th(Mod(T )) is finitely axiomatizable.

So let C be an MV algebra. If J is a nonsingular ideal of C[x1, . . . , xn], and p, q are
elements of C[x1, . . . , xn], then we say p ≡J q if for every zero v of J in Cn, p(v) = q(v).

The Lindenbaum MV-algebra of J is LINDJ = C[x1, . . . , xn]/ ≡J .
We denote by TFn(C) the MV algebra of truncated funtions on Ξ(C) as defined in

Section 2, and by TFn(C)|S the MV algebra of truncated functions restricted to S, where
S ⊆ Cn.

Lemma 2. Let p ∈ C[x1, . . . , xn] be a polynomial with at least one zero in Cn. Then the

MV algebra LINDp is isomorphic to TFn(C)|V (p).

6.1.  Lukasiewicz logic with constants

In this section we aim to show some results concerning the  Lukasiewicz logic with
constants in a fixed MV algebra A, denoted by  L∞(A). Indeed, we have:

Proposition 3. For every MV algebra A, the MV algebras Lind(A) and A[x1, x2, . . .] are

isomorphic.

We will say that a logic is complete if tautologies coincide with provable formulas.
Clearly, for every A, every provable formula of  L∞(A) is a tautology. The converse im-
plication does not hold in general, but we have a characterization in terms of polynomial
completeness:

Proposition 4. For every MV algebra A, the logic  L∞(A) is complete if and only if A is

polynomially complete.
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