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bling Systems
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Abstract. In this paper, a class of generalized Shannon-McMillan theorems for the nonhomoge-
neous Markov chains field on an infinite tree with respect to the generalized random selection sys-
tem is discussed by constructing a nonnegative martingale. As corollaries, some Shannon-Mcmillan
theorems for the homogeneous Markov chains field on an infinite tree and the nonhomogeneous
Markov chain are obtained. Some results which have been obtained are extended.
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1. Introduction.

A tree is a graph S = {T,E} which is connected and contains no circuits. Given any
two vertices σ, t( σ 6= t ∈ T ), let σt be the unique path connecting σ and t. Define the
graph distance d(σ, t) to be the number of edges contained in the path σt.

Let T be an arbitrary infinite tree that is partially finite (i.e. it has infinite vertices,
and each vertex connects with finite vertices) and has a root o. For a better explanation
of the infinite root tree T , we take Cayley tree TC,N for example. It’s a special case of
the tree T , the root o of Cayley tree has N neighbors and all the other vertices of it have
N + 1 neighbors each (see Fig.1).

Let σ, t be vertices of the infinite tree T . Write t ≤ σ (σ, t 6= −1) if t is on the unique
path connecting o to σ, and |σ| for the number of edges on this path. For any two vertices
σ, t of the tree T , denote by σ ∧ t the vertex farthest from o satisfying σ ∧ t ≤ σ and
σ ∧ t ≤ t.

The set of all vertices with distance n from root o is called the n-th generation of T ,
which is denoted by Ln. We say that Ln is the set of all vertices on level n. We denote by
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T (n) the subtree of the tree T containing the vertices from level 0 (the root o) to level n.
Let t(6= o)be a vertex of the tree T . We denote the first predecessor of t by 1t, the second
predecessor of t by 2t, and the n-th predecessor of t by nt. Let XA = {Xt, t ∈ A}, and let
xA be a realization of XA and denote by |A| the number of vertices of A .
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Fig.1 An infinite tree TC,2

Definition 1 Let S = {s0, s1, s2, · · · } and P (y|x) be a nonnegative function on S2.
Let

P = ((P (y|x)), P (y|x) ≥ 0, x, y ∈ S.

If ∑
y∈S

P (y|x) = 1,

then P is called a transition matrix.
Definition 2 Let T be an infinite tree, S = {s0, s1, s2, · · · } be a countable state space,

and {Xt, t ∈ T} be a collection of S-valued random variables defined on the probability
space (Ω,F , P ). Let

P = (P (x)), x ∈ S (1)

be a distribution on S, and

Pn = (Pn(y|x)), x, y ∈ S, (2)

be a collection of transition matrices. For any vertex t (t 6= o,−1), if

P (Xt = y|X1t = x, and Xσ for σ ∧ t ≤ 1t)

= P (Xt = y|X1t = x) = Pn(y|x) t ∈ Ln, ∀x, y ∈ S (3)

and
P (Xo = x) = P (x), x ∈ S, (4)
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then {Xt, t ∈ T} is called an S-valued nonhomogeneous Markov chain indexed by a tree T
with the initial distribution (1) and transition matrices (2), or a T -indexed nonhomoge-
neous Markov chain.

Definition 3. Let Pn = Pn(j|i) and P = (P (s0), P (s1), P (s2), · · · ) be defined as
before, µP be a nonhomogeneous Markov measure on (Ω,F). If

µP (x0) = P (x0) (5)

µP (xT
(n)

) = P (x0)
n∏
k=1

∏
t∈Lk

Pk(xt|x1t) n ≥ 1, (6)

then µP will be called a Markov chains field on an infinite tree T determined by the
stochastic matrices Pn and the distribution P .

Let µ be an arbitrary probability measure, log is the natural logarithmic. Let

fn(ω) = − 1

|T (n)|
logµ(XT (n)

). (7)

fn(ω) is called the entropy density on subgraph T (n) with respect to µ. If µ = µP , then
by (6),(7) we have

fn(ω) = − 1

|T (n)|
[logP (X0) +

n∑
k=1

∑
t∈Lk

logPk(Xt|X1t)]. (8)

The convergence of fn(ω) in a sense (L1 convergence, convergence in probability,
or almost sure convergence) is called the Shannon-McMillan theorem or the asymptotic
equipartition property(AEP) in information theory. There have been some works on limit
theorems for tree-indexed stochastic processes. Benjamini and Peres [1] have given the
notion of the tree-indexed Markov chains and studied the recurrence and ray-recurrence
for them. Berger and Ye [2] have studied the existence of entropy rate for some stationary
random fields on a homogeneous tree. Ye and Berger (see [4],[5]), by using Pemantle’s
result [3] and a combinatorial approach, have studied the Shannon-McMillan theorem
with convergence in probability for a PPS-invariant and ergodic random field on a ho-
mogeneous tree. Yang and Liu [8] have studied a strong law of large numbers for the
frequency of occurrence of states for Markov chains field on a homogeneous tree (a partic-
ular case of tree-indexed Markov chains field and PPS-invariant random fields). Yang (see
[6]) has studied the strong law of large numbers for frequency of occurrence of state and
Shannon-McMillan theorem for homogeneous Markov chains indexed by a homogeneous
tree. Recently, Yang (see [13]) has studied the strong law of large numbers and Shannon-
McMillan theorem for nonhomogeneous Markov chains indexed by a homogeneous tree.
Huang and Yang (see [11]) have also studied the strong law of large numbers for Markov
chains indexed by an infinite tree with uniformly bounded degree. Peng and Yang have
studied a class of small deviation theorems for functionals for arbitrary random field on a
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homogeneous trees (see[14]). Wang has also studied some Shannon-McMillan approxima-
tion theorems for arbitrary random field on the generalized Bethe tree (see[9]). Afterward,
some scholars have investigated all kinds of applications of Shannon-McMillan theorems
in the economic management and optimization controls (see[15-18]).

Definition 4. Let {fn(x1, · · · , xn), n ≥ 1} be a sequence of real-valued functions
defined on Sn(n = 1, 2, · · · ), which will be called the generalized selection functions if
{fn, n ≥ 1} take values in an arbitrary interval of [a, b] (a, b ∈ R). We let

Y0 = y (y is an arbitrary real number),

Yt = f|t|(X1t , X2t , · · · , X0), |t| ≥ 1, (9)

where |t| stands for the number of the edges on the path from the root o to t. Then
{Yt, t ∈ T (n)} is called the generalized gambling system or the generalized random selection
system indexed by an infinite tree with uniformly bounded degree. The traditional random
selection system {Yn, n ≥ 0} [10] takes values in the set of {0, 1}.

We first explain the conception of the traditional random selection, which is the crucial
part of the gambling system. We give a set of real-valued functions fn(x1, · · · , xn) defined
on Sn(n = 1, 2, · · · ), which will be called the random selection functions if they take values
in a two-valued set {0, 1}. Then let

Y0 = y(y is an arbitrary real number),

Yn+1 = fn(X1, · · · , Xn), n ≥ 0.

{Yn, n ≥ 1} is called the gambling system (the random selection system).

In order to explain the real meaning of the notion of the random selection, we consider
the traditional gambling model. Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain,
and {gn(x, y), n ≥ 1} be a real-valued function sequence defined on S2. Interpret Xn

as the result of the nth trial, the type of which may change at each step. Let µn =
Yngn(Xn−1, Xn) denote the gain of the bettor at the nth trial, where Yn represents the
bet size, gn(Xn−1, Xn) is determined by the gambling rules, and {Yn, n ≥ 0} is called
a gambling system or a random selection system. The bettor’s strategy is to determine
{Yn, n ≥ 1} by the results of the last two trials. Let the entrance fee that the bettor
pays at the nth trial be bn. Also suppose that bn depends on Xn−1 as n ≥ 1, and b0 is a
constant. Thus

∑n
k=1 Ykgk(Xk−1, Xk) represents the total gain in the first n trials,

∑n
k=1 bk

the accumulated entrance fees, and
∑n

k=1 [Ykgk(Xk−1, Xk)− bk] the accumulated net gain.
Motivated by the classical definition of ”fairness” of game of chance (see Kolmogorov[10]),
we introduce the following definition:

Definition 5. The game is said to be fair, if for almost all ω ∈ {ω :
∑∞

k=1 Yk =∞},
the accumulated net gain in the first n trial is to be of smaller order of magnitude than
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the accumulated stake
∑n

k=1 Yk as n tends to infinity, that is

lim
n→∞

1∑n
k=1 Yk

n∑
k=1

[Ykgk(Xk−1, Xk)− bk] = 0 a.s. on {ω :
∑∞

k=1
Yk =∞}.

Definition 6. Let {Yt, t ∈ T (n)} be a generalized random selection system indexed
by an infinite tree defined as (9). We call

Sn(ω) = − 1
n∑
k=1

∑
t∈Lk

|Yt|
[Y0 logP (X0) +

n∑
k=1

∑
t∈Lk

Yt logPk(Xt|X1t)] (10)

the generalized relative entropy density of nonhomogeneous Markov chain field {Xt, t ∈
T (n)} on the generalized random selection system. Obviously, the generalized relative en-
tropy density Sn(ω) is just the general relative entropy density fn(ω) if Yt ≡ 1, t ∈ T (n).

In this paper, we study a class of generalized Shannon-McMillan theorems for nonho-
mogeneous Markov chains field on the generalized random selection system which takes
values in a countable alphabet set on the infinite tree by constructing the consistent distri-
bution functions and a nonnegative martingale. As corollaries, some Shannon-McMillan
theorems for nonhomogeneous, homogeneous Markov chains field on an infinite tree and
the general nonhomogeneous Markov chain are obtained. Liu and Yang’s main results
(see [7], [13]) which relate to the tree-indexed nonhomogeneous Markov chain field and
the general nonhomogeneous Markov chain are extended.

2. Main result and its proof.

Theorem 1. Let X = {Xt, t ∈ T} be a nonhomogeneous Markov chains field on a
homogeneous tree, {Yt, t ∈ T}, Sn(ω) be defined as (9), (10). Denote by H(Pk(s1|X1t),
Pk(s2|X1t), · · · ) the random conditional entropy of Xt relative to X1t on the measure µP ,
that is

H(Pk(s1|X1t), Pk(s2|X1t), · · · ) = −
∑
xt∈S

Pk(xt|X1t) logPk(xt|X1t) t ∈ Lk, k ≥ 1.

Denote α > 0, G = max{|a|, |b|},

D(ω) = {ω : lim
n

n∑
k=1

∑
t∈Lk

|Yt| =∞}. (11)

We set

Bα = lim sup
n→∞

1∑n
k=1

∑
t∈Lk
|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|Pk(Xt|X1t)
−αG|X1t ] <∞. (12)
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Then

lim
n→∞

[Sn(ω)− 1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

YtH(Pk(s1|X1t), Pk(s2|X1t), · · · )] = 0.

µP − a.s. ω ∈ D(ω) (13)

Proof. On the probability space (Ω,F , µP), let λ > 0 be a constant. Denote

Qk(λ) = E[Pk(Xt|X1t)
−λYt |X1t = x1t ] =

∑
xt∈S

Pk(xt|x1t)1−λYt , (14)

qk(λ;x1t , xt) =
Pk(xt|x1t)1−λYt

Qk(λ)
, x1t , xt ∈ S. (15)

g(λ;xT
(n)

) = P (x0)
n∏
k=1

∏
t∈Lk

qk(λ;x1t , xt). (16)

By (14-16) we can write that∑
xLn∈S

g(λ, xT
(n)

)

=
∑
xLn∈S

P (x0)

n∏
k=1

∏
t∈Lk

Pk(xt|x1t)1−λYt
Qk(λ)

= g(λ, xT
(n−1)

)
∑
xLn∈S

∏
t∈Ln

Pn(xt|x1t)1−λYt
E[Pn(Xt|X1t)

−λYt |X1t = x1t ]

= g(λ, xT
(n−1)

)
∏
t∈Ln

∑
xt∈S

Pn(xt|x1t)1−λYt
E[Pn(Xt|X1t)

−λYt |X1t = x1t ]

= g(λ, xT
(n−1)

)
∏
t∈Ln

E[Pn(Xt|X1t)
−λYt |X1t = x1t ]

E[Pn(Xt|X1t)
−λYt |X1t = x1t ]

= g(λ, xT
(n−1)

).

Hence g(λ;xT
(n)

), n = 1, 2, · · · are a set of consistent distribution functions. Set

Un(λ, ω) =
g(λ;XT (n)

)

µP (XT (n)
)
. (17)

Since g and µP are two probability measures, {Un(λ, ω),Fn, n ≥ 1} (Fn = σ(XT (n)
))

is a nonnegative martingale which converges almost surely(see[12]). Thus, by Doob’s
martingale convergence theorem we get

lim
n→∞

Un(λ, ω) = U∞(λ, ω) <∞. µP − a.s. (18)
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By (11) and (18), we have

lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|
logUn(λ, ω) ≤ 0. µP − a.s. ω ∈ D(ω) (19)

By (6), (14)-(17), we can rewrite (19) as

lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

[−λYt logPk(Xt|X1t)− logE(Pk(Xt|X1t)
−λYt |X1t)] ≤ 0.

µP − a.s. ω ∈ D(ω) (20)

By the inequality ex − 1− x ≤ (1/2)x2e|x|, we have

x−λ − 1− (−λ) log x ≤ (1/2)λ2(log x)2x−|λ|, 0 ≤ x ≤ 1. (21)

Taking into account (12), (20), (21) and the inequality log x ≤ x − 1, (x > 0), noticing
that Yt ∈ [a, b], |Yt| ≤ max{|a|, |b|} = G, t ∈ Lk, k ≥ 1,

max{(log x)2xh, 0 ≤ x ≤ 1, h > 0} =
4e−2

h2
,

in the case of 0 < |λ| < t < α, we can write

lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

[−λYt logPk(Xt|X1t)− E(−λYt logPk(Xt|X1t)|X1t)]

≤ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

[logE(Pk(Xt|X1t)
−λYt |X1t)− E(−λYt logPk(Xt|X1t)|X1t)]

≤ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

[E(Pk(Xt|X1t)
−λYt |X1t)− 1− E(−λYt logPk(Xt|X1t)|X1t)]

≤ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[
1

2
λ2Y 2

t (logPk(Xt|X1t))
2Pk(Xt|X1t)

−|λYt||X1t ]

≤ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[
λ2G

2
|Yt|(logPk(Xt|X1t))

2Pk(Xt|X1t)
−|λ|G|X1t ]

=
λ2G

2
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt| log2 Pk(Xt|X1t)



10 K. Wang, D. Zong

· Pk(Xt|X1t)
(α−|λ|)GPk(Xt|X1t)

−αG|X1t ]

≤ λ2G

2
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[
4e−2

(α− |λ|)2G2
· |Yt|Pk(Xt|X1t)

−αG|X1t ]

≤ 2λ2e−2

(α− t)2G
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|Pk(Xk|X1t)
−αG|X1t ]

=
2λ2e−2

(α− t)2G
Bα <∞. µP − a.s. ω ∈ D(ω) (22)

In the case of 0 < λ < t < α, dividing both sides of (22) by λ, we obtain

lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

Yt[− logPk(Xt|X1t)− E(− logPk(Xt|X1t)|X1t)] ≤
2λe−2Bα
(α− t)2G

µP − a.s. ω ∈ D(ω) (23)

Choose 0 < λi < α, (i = 1, 2, · · · ) such that λi → 0+ (i → ∞). Then for all i we have
by (23) that

lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

Yt[− logPk(Xt|X1t)− E(− logPk(Xt|X1t)|X1t)] ≤ 0.

µP − a.s. ω ∈ D(ω) (24)

When −α < −t < λ < 0, dividing two sides of (22) by λ, we attain

lim inf
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

Yt[− logPk(Xt|X1t)− E(− logPk(Xt|X1t)|X1t)] ≥
2λe−2Bα
(α− t)2G

.

µP − a.s. ω ∈ D(ω) (25)

Choose −α < −t < λi < 0, (i = 1, 2, · · · ) such that λi → 0− (i→∞). Then for all i we
have by (25) that

lim inf
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

Yt[− logPk(Xt|X1t)− E(− logPk(Xt|X1t)|X1t)] ≥ 0.

µP − a.s. ω ∈ D(ω) (26)
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It follows from (24) and (26) that

lim
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

Yt[− logPk(Xt|X1t)− E(− logPk(Xt|X1t)|X1t)] = 0.

µP − a.s. ω ∈ D(ω). (27)

Noticing that

H(Pk(s1|X1t), Pk(s2|X1t), · · · )
= −

∑
xt∈S

Pk(xt|X1t) logPk(xt|X1t) = E(− logPk(Xt|X1t)|X1t),

it follows from (10) and (27) that

lim
n→∞

[Sn(ω)− 1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

YtH(Pk(s1|X1t), Pk(s2|X1t), · · · )]

= lim
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

Yt[− logPk(Xt|X1t)− E(− logPk(Xt|X1t)|X1t)] = 0. (28)

We complete the proof of the theorem.J

Corollary 1. Let X = {Xt, t ∈ T} be a nonhomogeneous Markov chains field on an
infinite tree, fn(ω) be defined as (8). Denote α > 0. We set

bα = lim sup
n→∞

1

|T (n)|

n∑
k=1

∑
t∈Lk

E[Pk(Xt|X1t)
−α|X1t ] <∞. (29)

Then

lim
n→∞

[fn(ω)− 1

|T (n)|

n∑
k=1

∑
t∈Lk

H(Pk(s1|X1t), Pk(s2|X1t), · · · )] = 0. µP−a.s. (30)

Proof. Letting a = 0, b = 1, Yt ≡ 1, t ∈ T (n), n ≥ 0, we have lim
n

n∑
k=1

∑
t∈Lk

|Yt| =

lim
n
|T (n)| = +∞, G = max{0, 1} = 1. Hence Sn(ω) = fn(ω), D(ω) = Ω. (29), (30) follow

from (12) and (13) immediately. J

{Xt, t ∈ T} will be called S−valued homogeneous Markov chains field indexed by an
infinite tree if for all n ≥ 0,

Pn = P = (P (y|x)), ∀x, y ∈ S. (31)
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Corollary 2. Let {Xt, t ∈ T} be a homogeneous Markov chains field indexed by
an infinite tree, fn(ω) and H(Pk(s1|X1t), Pk(s2|X1t), · · · ) be defined as above. Denote
0 < α < 1/G, if ∑

i∈S

∑
j∈S

P (j|i)1−αG <∞. (32)

Then

lim
n→∞

[Sn(ω)− 1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

YtH(Pk(s1|X1t), Pk(s2|X1t), · · · )] = 0. µP−a.s. (33)

Proof. By (31) and (32), we can write

Bα = lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|Pk(Xt|X1t)
−αG|X1t ]

= lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

∑
xt∈S
|Yt|P (xt|X1t)

1−αG

= lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

∑
i∈S

∑
j∈S
|Yt|δi(X1t)P (j|i)1−αG

≤ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

∑
i∈S

∑
j∈S
|Yt|P (j|i)1−αG

≤
∑
i∈S

∑
j∈S

P (j|i)1−αG lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

|Yt|

=
∑
i∈S

∑
j∈S

P (j|i)1−αG <∞. (34)

It follows that (12) holds. Therefore, (33) follows from (13).J

3. Some Shannon-McMillan theorems on a finite states space.

Corollary 3. Let X = {Xt, t ∈ T} be a nonhomogeneous Markov chains field on
an infinite tree which takes values in the finite alphabet set S = {s1, s2, · · · , sN}, fn(ω) be
defined as (8). Denote by H(Pk(s1|X1t), · · · , Pk(sN |X1t)) the random conditional entropy
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of Xt relative to X1t on the measure µP , that is

H(Pk(s1|X1t), · · · , Pk(sN |X1t)) = −
sN∑

xt=s1

Pk(xt|X1t) logPk(xt|X1t), t ∈ Lk, k ≥ 1.

Then

lim
n→∞

[Sn(ω)− 1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

YtH(Pk(s1|X1t), · · · , Pk(sN |X1t))] = 0.

µP − a.s. ω ∈ D(ω) (35)

Proof. Let 0 < α < 1/G. By (12) we can conclude

Bα = lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

E[|Yt|Pk(Xt|X1t)
−αG|Xk−1

0 ]

= lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

sN∑
xt=s1

|Yt|Pk(xt|X1t)
1−αG

≤ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

sN∑
xt=s1

|Yt|

≤ lim sup
n→∞

N
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

|Yt| = N <∞. µP − a.s. (36)

Hence (12) holds naturally. (35) follows from (13).J

Corollary 4[13]. Let X = {Xt, t ∈ T} be a nonhomogeneous Markov chains field on
an infinite tree which takes values in the finite alphabet set S = {s1, s2, · · · , sN}, fn(ω)
and H(Pk(s1|X1t), · · · , Pk(sN |X1t)) be defined as above. Then

lim
n→∞

[fn(ω)− 1

|T (n)|

n∑
k=1

∑
t∈Lk

H(Pk(s1|X1t), · · · , Pk(sN |X1t))] = 0. µP − a.s.

(37)

Proof. Letting Yt ≡ 1, t ∈ T (n), n ≥ 1, we obtain lim
n

n∑
k=1

∑
t∈Lk

|Yt| = lim
n
|T (n)| = +∞.

Hence Sn(ω) = fn(ω), D(ω) = Ω. (37) follows from (35) immediately.J
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Corollary 5[7]. Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain with the initial
distribution and the transition probabilities as follows:

P (i) > 0, i ∈ S.

Pk(j|i) > 0, i, j ∈ S, k = 1, 2, · · · .

Set

fn(ω) = − 1

n+ 1
[logP (X0) +

n∑
k=1

logPk(Xk|Xk−1)],

Hk(Xk|Xk−1) = −
N∑

xk=1

Pk(xk|Xk−1) logPk(xk|Xk−1).

Then

lim
n→∞

[fn(ω)− 1

n+ 1

n∑
k=1

Hk(Xk|Xk−1)] = 0. a.s. (38)

Proof. When the successor of each vertex of the tree T has only one vertex, the nonho-
mogeneous Markov chains field on the tree degenerates into the general nonhomogeneous
Markov chain. Hence we easily get |T (n)| = n+ 1, Pk(xt|x1t) = Pk(xk|xk−1). (38) follows
from (37) naturally.J

4. Derivation results.

Theorem 2. Let X = {Xt, t ∈ T} be a nonhomogeneous Markov chains field on an
infinite tree which takes values in the countable alphabet set S = {s1, s2, · · · }, Sn(ω) be
defined as (10). Denote α ≥ 0, 0 < C < 1. Set

Cα = lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|Pk(Xt|X1t)
−(2+αG)I{Pk(Xt|X1t )≤C}|X1t ] <∞.

µP − a.s. (39)

Then

lim
n→∞

[Sn(ω)− 1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

YtH(Pk(s1|X1t), Pk(s2|X1t), · · · )] = 0. µP − a.s.

(40)
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Proof. Let us denote Pk(Xt|X1t) = Pk in brief. Taking into account (39) and the
inequality 1 − 1

x ≤ log x ≤ 0, (0 < x < 1), from the fourth inequality of (22) in the proof
of Theorem 1, in the case of 0 < |λ| < α, we can write

lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

[−λYt logPk(Xt|X1t)− E(−λYt logPk(Xt|X1t)|X1t)]

≤ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[
λ2G

2
|Yt| log2 Pk(Xt|X1t)Pk(Xt|X1t)

−αG|X1t ]

=
λ2G

2
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|(logPk)
2P−αGk (I{Pk(Xt|X1t )≤C} + I{Pk(Xt|X1t )>C})|X1t ]

≤ λ2G

2

{
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|(logPk)
2P−αGk I{Pk(Xt|X1t )≤C}|X1t ]

+ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|(logPk)
2P−αGk I{Pk(Xt|X1t )>C}|X1t ]


≤ λ2G

2

{
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|(logPk)
2P−αGk I{Pk(Xt|X1t )≤C}|X1t ]

+ lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|C−αG · (logC)2|X1t ]


≤ λ2G

2

{
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|(logPk)
2P−αGk I{Pk(Xt|X1t )≤C}|X1t ]

+ C−αG · (logC)2
}

≤ λ2G

2

{
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|(1−
1

Pk
)2P−αGk I{Pk(Xt|X1t )≤C}|X1t ]

+C−αG · (logC)2
}

=
λ2G

2

{
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|(1− Pk)2P
−(2+αG)
k I{Pk(Xt|X1t )≤C}|X1t ]

+C−αG · (logC)2
}
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≤ λ2G

2

{
lim sup
n→∞

1
n∑
k=1

∑
t∈Lk

|Yt|

n∑
k=1

∑
t∈Lk

E[|Yt|P−(2+αG)
k I{Pk(Xt|X1t )≤C}|X1t ]

+C−αG · (logC)2
}

=
λ2G

2

{
Cα + C−αG · (logC)2

}
<∞.

Imitating the proof of (23)-(28), Theorem 2 follows from Theorem 1.J
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