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On a Boundary Control Problem for Forced String Os-
cillations

M.F.Abdukarimov

Abstract. Necessary and sufficient conditions for the existence of boundary controls at both ends
of a string of length [ are given for the critical case T' = [. Being obtained in an explicit analytic
form, these controls transform the process of forced string oscillations from an arbitrary initial
state to any pre-assigned final state.
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1. Introduction

In this paper, for generalized solutions of the inhomogeneous wave equation uy(x,t) —
Uge(2,t) = fa,t), 0 <z < 1,0 <t < T, with a finite energy, we study the problem of
controlling vibrations on both endpoints of the string: «(0,t) = p(t) and u(l,t) = v(t).

The solution to this problem depends on the relation between the string’s length [ and
the time T of control. In this paper we consider the case T = [ which is called critical.

In this case, for any five functions (), ¥ (x), p1(x), Y¥1(x) and f(x,t) of the classes

o(x) € W3[0,1], () € La[0,1], @1(x) € W[0,1], ¥1(x) € La[0,1]

flx,t) e a0 <z <) x (0 <t <T) (%)

we obtain necessary and sufficient conditions for the existence and uniqueness of boun-
dary controls p(t) and v(t) which transform the oscillation process from the initial state
{u(z,0) = p(z),u(z,0) = ¢(x)} to the final state {u(z,T) = ¢1(z), uw(z,T) = Y1(z)}.
These boundary controls are given in an explicit analytic form. We also show that the
time interval T' = [ is the smallest possible for the full controllability of the forced string
vibrations under minimal restrictions.

To address various problems associated with the boundary control, V. A. II'in and his
disciples have published a series of papers (see, e.g., [1-6] and further references in [7]).
Some earlier results related to this subject can be found in [8-12].
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Note that all these papers study the process of free oscillations, i.e. the oscillations
described by the homogeneous wave equation. The case of forced oscillations, i.e. the
case when the oscillating system is affected by an external force, is studied in [13-15] for
classical solutions.

1°. Statement of the problem and basic definitions. In an open rectangle
Qr=0<z<l)x(0<t<T), let us consider the following three problems for the
inhomogeneous wave equation.

Mixed problem I:

U (2, t) — uge(x,t) = f(z,t) in Qr,
w(0,t) = u(t), wu(l,t)=v(t) for 0<t<T,
u(z,0) = p(z), w(x,0)=v(z) for 0<x <], (3)

in which  u(t), v(t) € W3[0,T], ¢(x), ¥(z), f
compatibility conditions

x,t) belong to the classes (%) and the

1(0) = ¢(0),  v(0) = (l) (4)
are satisfied.
Mixed problem II: Here the relations (1), (2) are supplied with

u(z,T) =¢1(z), w(z,T)=1y1(z) for 0<z <], (5)

in which ¢1(z), ¥1(z), f(x,t) belong to the classes (x), u(t), v(t) € W4[0,T] and the
compatibility conditions

w(T) =¢1(0), v(T)=er(l) (6)
are satisfied.

Boundary control problem III: Here we consider (1),(2),(3) and (5) all together
in which p(z), ¢1(x), ¥(z), ¥1(x), f(x,t) belong to the classes (), u(t), v(t) € W1[0,T)]
and the compatibility conditions (4) and (6) are satisfied.

The solution to these problems will be sought in the class Wi (Qr) introduced in [1].

Definition 1. We say that a function of two variables u(z,t) belongs to /W?QI(QT) if it is
continuous in the closed rectangle Qp and has generalized first-order partial derivatives
which belong to La]0 < x < 1] for any fized t € [0,T] and belong to Lo[0 < t < T for any
fized x € [0,1].

Definition 2. We say that a function of one variable p(t) (respectively Ti(t)) belongs to the
class W3[0, T] (respectively, to the class W; [0,T7) if it is defined for allt <T (respectively,
for all t > 0), belongs to W20, T] and satisfies wu(t) = 0 for t < 0(respectively, satisfies
) =0 fort>1T).

Definition 3. A function u(x,t) is called the solution from the class W;(QT) to the mixed
problem I if u(z,t) € W (Qr) and the identity

o _

T l
/u T, ) [Py (x,t) — Py (z, t)]dadt —I—/ x)Py(x,0) — Y(z)P(z,0)]dr—
0 0
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T T 1 T
— [ ()P, (0,8)dt + [ v(t)P.(1,t)dt — flx (z,t)dzdt =0 (7)
/ [rom] [

holds for any function ®(x,t) € C*(Qr) satisfying the conditions ®(0,t) =0, ®(I,t) =0
for 0 <t <T and ®(x,T) =0, ®4(x,T) =0 for 0 < x <, boundary conditions (2), the
first initial condition (3) in the classical sense and the second initial condition (3) almost
everywhere (a.e.).

Definition 4. A function u(x,t) is called the solution from the class W%(QT) to the mixed
problem I if u(z,t) € W3 (Qr) and the identity

I T l
//u x,t) [Py (z,t) — Ppyp(z, t)]dxdt — / )Pz, T) — 1 (2)P(z, T)|dx—
00 0

T T I T
— [ u(t)®,(0,t)dt + [ v(t)@,(l,t)dt — f(z (x,t)dzxdt =0 (8)
[romoas [rmtvou=] [res

holds for any function ®(x,t) € C*(Qr) satisfying the conditions ®(0,t) =0, ®(I,t) =0
for 0 <t <T and ®(z,0) =0, P4(x,0) =0 for 0 < x < I, boundary conditions (2), the
first final condition (5) in the classical sense and the second final condition (5) a.e.

Definition 5. A function u(x,t) is called the solution from the class of /V[721(QT) to the
boundary control problem III if u(x,t) is a solution to the mized problem I of this class and,
moreover, it satisfies the first relation (5) in the classical sense and the second relation
(5) a.e.

2°. Auxiliary statements. Let us start with two uniqueness results. The proof of
these assertions are similar to those given in [3] for the homogeneous wave equation.

Proposition 1. For any T' > 0, each of the mized problems I and II has a unique solution
of the class W3 (Qr).

Proposition 2. For any 0 < T <, there is a unique solution of the class /V[721(QT) to the
problem III.

Now consider the mized problem I in which ¢(x) = 0 on [0,l], ¥(z) = 0 a.e. on
[0,], and the boundary functions u(t) and v(t) in W0, T] are arbitrary. By virtue of the
compatibility conditions (4) we have the relations

u(0) =0, v(0)=0, (9)

that allow to continue p(t) and v(t) as identical zeros for all t < 0 and turn them into
functions p(t) and v(t) of the class W3[0, T).
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Proposition 3. For 0 < T <1, ¢(x) =0 and ¢(z) = 0 a.e. on [0,l], for any f(z,t) €
Lo[Qr) and arbitrary functions u(t),v(t) € W0,T] satisfying (9), the unique solution
u(x,t) of the class W4 (Qr) to the mized problem I is defined by the relation

t r+t—7

u(m,t):H(t—x)—l—y(t—l—m—l)—i-%/ / f(&, ) dedr. (10)
0 z—t+7

Proof. Let us extend the function f(z,t) to be odd in the first variable with respect to
x = 0 and = = [; thus it will belong to the class La[(—l < z < 2[) x (0 < t < T)]. Applying
properties of u(t) and v(t) it is easy to verify that, for 0 < 7" < [, function (10) satisfies
the boundary conditions u(0,t) = u(t), u(l,t) = v(t), the first initial condition u(x,0) =0
Vax € [0,{] in the classical sense, and the second initial condition w(x,0) = 0 a.e. on [0,1].
Therefore, it suffices to show that this function satisfies (7) where ¢(z) =0 Vz € [0,[] and

¥(xz) =0 a.e. on [0,!], i.e. to show that the relation

T

l T
Lyfo = O/O/U(%t)[@tt(%t) —‘I’m(m,t)]dmdt—O/u(t)q)x(o,t)dt—i-

T I T
+/1/ (L t)dt — //f O(x,t)dxdt =0 (11)
0 00

holds with any function ®(x,t) € C?(Qr) satisfying the conditions ®(0,t) =0, ®(I,t) =0
for 0 <t < T and ®(z,T) = 0, 4(x,T) = 0 for 0 < = < [. Integrating by parts, we
rewrite (11) as follows:

! I T I T
//uxa:t (x,t)dxdt — //utxt@ta:tdxdt //f O (x,t)dxdt.
0 0 0 0 0 0

(12)

Thus, it suffices to prove that the right-hand side of (12) is zero. Denote by f(x,t) an

arbitrary primitive of f(z,t) with respect to z. Calculating u,(x,t) and us(x,t) from (10)
and substituting them in the right-hand side of (12) we get

+;O/Z{O/To/t (@+t—7,7)— f(x—t+7,7)dr)® (xtdt}dx/{o/lo/t (z+t—7,7)+

T

V(b4 7, 7)dr) Do, £)da}dt — / / P, ) (x, ) dwdt =

0 0

l
/{/ =)+ (4 — 1)) (a0t Y — /O/ (t =)+ 1/ (42— 1))y, £)dar Y+
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l
= /{[—H(T —z)+u(T +z—1)]P(z,T) — [-p(—2) + v(z — )]s (z, 0) }dz—

T

. T
—// (t—z)+u(t+z—1)d xt(x,t)dxdt—/{[ p(t = 1) + ()] (1, £)—
0 O

0

—[—p(t) + vt — 1)]2:(0,t) }dt+

I T t
//{/[f(a:—l—t—T,T)—i—
0 0 O

I T t
—I—f(a: —t+7,7)]dr} Py (x, t)dxdt + /// x, 7)dT| Py (x, t)dxdt+
00 0

LT t
[ [(fue+i-nn+
0 0 O

. T
+f(z —t+7,7))dr} By (2, t)dadt — //f x,t)®(x, t)dxdt.
00

[\’)lH

I T
+// (t—x)+vt+z—1)]Py(z,t)dedt —
00

_|_

N —

The right-hand side of this equation is zero as the double integrals cancel each other
out and all other terms vanish as ®,(x,T) = 0, —u(—z) + v(z — 1) = 0 Vz € [0,]] and
<I>t(0,t) = 0, (I)t(l,t) =0 Vte [O,T]

Assertion 3 is proved. Similarly we can prove the following «

Proposition 4. For 0 < T <1, ¢(x) =0 and ¢(z) = 0 a.e. on [0,l], for any f(z,t) €
Lo[Qr) and arbitrary functions u(t),v(t) € W4[0,T] satisfying u(T) = 0, v(T) = 0, the
unique solution u(z,t) of the class Wa(Qr) to the mived problem II is defined by the

relation
T x+t—T1

u(:z:,t):ﬁ(t+x)+ﬁ(t—$+l)—%/ / f(&, 1)dédr.

t x—t+71

2. The Main Result

Our main result is the following
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Theorem 1. Let T'=1. Then for five predetermined functions ¢(x), ¥(x), v1(x), ¥1(x)
and f(xz,t) belonging to the classes (*), there exists a unique solution to the boundary
control problem III of the class W3(Qr) if and only if the following relations

l
01(0) + 01(0) — / f(t - r.7)dr =0, (13)
0

l
In(l) — pr(1) — B(0) + (0) - / f(r,r)dr =0, (14)
0

hold (here i (z), 1 (x) and f(z,t) denote the primitives of ¥(z), V() and f(z,t) in z,
respectively).
Under these conditions, the solution to this problem is as follows

( x T
S+t +ol@—t) + (@ +1t) -z —1) +jt‘ +ft f(&,m)dedr]  in A,
0 z—t+7
u(z,t) = %[90(334‘75)4-7“ T+ )+901(33—t—|—l)—1%1(a:—t+l)—|—]\7(x,t)] m Ao,
slo(e —t) —Y(x —t) +pr(x+t =1) + (v +t —1) + M(x,1)] in Ag,
r+t—I l x+t—T
oot - Db oo — -0+ | pu©de— [ fEr)dedr] in g
r—t+1 t x—t+T1

(15)
where A1 denotes the triangle bounded by the linest—x =0,t+x—1=0,t = 0; Ay is the
triangle bounded by the linest —x =0, t+x —1 =0, x = 0; Ag is the triangle bounded by
the linest —x =0,t4+x—1=0, x =1; A4 in the triangle bounded by the linest —x = 0,

t x+t—T1 [
t+x—1=0,t =1, and N(z,t) and M (z,t) stand for [ [ f(&, 7)dédr+ [ f(x—t+7,7)dT,
0 z—t+7 0
t x+t—7 . v
[ | f&r)dédr — [ f(z+t—7,7)dr, respectively.
0 z—t+T1 0

The desired boundary controls w(0,t) = u(t) and u(l,t) = v(t) which transform the
oscillatory process are given explicitly:

[
H(0) = 360) + 50 +eal =)~ ialt =0+ [ fe-mrar, (o)
0
1
u(t):%[¢1(t)+¢1()+¢(z—t Bl —1) / (t+1—7,7)d7]. (17)
0

Proof of necessity. First we consider the special case when ¢(z) = 0 on [0,!], and
Y(z) = 0 a.e. on [0,1]. The solution u(z,t) of Wi (Qr) to the problem III (if it exists)
is simultaneously a solution of the same class to the mixed problem I with ¢(z) = 0 on
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[0,{], and ¥ (x) = 0 a.e. on [0,l]. But this solution, by virtue of Proposition 3, can be
represented as in (10) whence we obtain the relations

l
ug(z, 1) =Yy (x) = p'(l — ) + +%/ (x+l—7,7)+ flx—1+7,7)]dr, (18)
0
l
ug(2,1) = ¢ (x) = —p'(l — ) + V/(x) -l-%/ (x+l—7,7)— fla—1l+7,7)dr (19)
0

which are valid in Ls[0, ] sense. Adding (18) and (19), we arrive at the equality

l
Py (x) + @) (x) = 20/ (2) + /f(a: +1—71,7)dr. (20)
0

Integrating (20) over [0,!] and using the relations v(0) = 0, v(I) = ¢1(l) we get
l l
dil) = e1(D) —/f(T,T)dTZ%(O)ﬂOl(O) —/f(l—T,T)dT. (21)
0 0

From (21) it follows that if we denote by v (z) and f(z,t) the primitive functions of
¥1(x) and f(z,t) in the variable x which satisfy

l
q[; )+ ¢1(0 fl—r,7)dr =0, (22)
-]
then we get
1
b= o0~ [ frnar=o. (23)
0

Thus, for the special case when ¢(z) = 0 on [0,l], and ¢(x) = 0 a.e. on [0,!], the
necessity of (13) and (14) is established.

Now let us consider the general case when ¢(z) is an arbitrary function of W0,1],
and ¢ (z) is an arbitrary element of Ls[0,!]. To this end, we extend the functions ¢(z) and
(x) on the segment — < z < 2[ so that ¢(z) becomes odd with respect to z = 0 and
x = [ and 1(x) keeps on to be a function in Ly. Also we extend the function f(z,t) so that
it becomes odd with respect to = 0 and = = [. These extended functions p(x), ¥ (z) and
f(z,t) belong to Wi [—1,2l], La[—1,2] and Ly[(—I < x < 21) x (0 < t <1)], respectively.

Now using these extended functions ¢(x), ¥ (x) and f(x,t), let us consider the function

[ih(z+t)—1 )]+

l\DlH
N | —

t
ﬁ(m,t):%[go(:v—l—t)—l—ga(m—t)] / Flott—r )= f(o—t+7,7)]dr
0

(24)
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which satisfies ¥(z,0) = ¢(z) Vo € [0,]] and J¢(z,0) = 9(x) a.e. on [0,!]. Let us show
that (24) gives a solution of /W?Ql(QT) to the mixed problem I in which w(z,t) is replaced
by ¥(x,t), u(t) — by 9¥(0,t), and v(¢t) — by ¥(l,t). It suffices to show that it satisfies (7)
where u(x,t), u(t), v(t) are replaced by 9(x,t), 9(0,t), ¥(l,t), respectively, for any function
®(x,t) (see definition 3).

Integrating by parts we rewrite (7) as follows:

I 1 l 1
//19;,3 (z,t)dzdt — /'ﬁt x,t) Py (x, t)dxdt — //f x,t)®(x, t)dxdt =
00 0 00

O\N

l
= /ﬂt(g:, 0)®(x,0)dz. (25)
0

By virtue of (24), the left-hand side of (25) equals

l
3 [+ = oo =)+l + D) + o = D) (2.0 — 200, (2,0))do—

0

l\’)l'—‘

L1
// z+t)— (@ —t) + Pz +t) + p(x — )| Puy(z, t)dadi—
0 0

! l
—5 [0 = =)+ 50+ 0) + (- )0}t — 5 [{let0)-
0 0
—o(—t) + P(t) + (=) (0, ) ydi+

1
/ / (x4 1) — oz — £) + (@ + 1) + (@ — 1)]o (x, ) dadt—
0 0

1 t
//{/[f(a: tt—77)+ flz— t+7,7)]dr}Poy(z, t)dzdi+
0 0 0

Lt
n 0/ 0/ [ 0/ Fa, 7)dr] Do (o, ) dadt+

L1t 1
//{/ (x+t—71,7 —i—f(:v—t—i—T, T)d7} Py (x, t)dxdt — //fxt (z,t)dxdt =
00 0 00

N =
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O/lﬁ( (x,0)dx = O/lw (z,0)d /ﬁt($,0)<1>(x,0)dg:,

which proves (25). Thus, we showed that the function (24) is a solution of /W?QI(QZ) to the
mixed problem I. Therefore, the difference [u(x,t) — J(x,t)] is a solution of the same class
to the homogeneous mixed problem I with zero initial conditions at ¢ = 0. Following the
above consideration of the special case one can easily show that this difference satisfies
the relations similar to (22) and (23):

$1(0) + ¢1(0) — D¢(0,1) — 9(0,1) =0, (26)
D1(l) = er(l) = Fe(1,1) +9(1,1) = 0. (27)
From (24) it follows
l
9(0,1) = 0, 94(0,1) = )+ [ f(l—7,7)d (28)
w1

l
9,0 =0, Du(1,1) = +/ (29)
0

It is easy to show that due to (28) and (29) relations (26) and (27) transform into (13)
and (14). The necessity of conditions (13) and (14) for the general case is proved.

Proof of sufficiency. Function (24) belongs to /WQI(Q;) as in each of the domains
A\, i =1,4, it is an algebraic sum of functions depending on x 4t or x — t with a square-
integrable generalized derivative and, by (22) and (23), it retains its continuity on common
borders of any two of these areas.

It is easy to verify the validity of the relations u(z,0) = ¢(x), u(x,l) = p1(x) for all
x € [0,!] and the equalities u:(z,0) = ¢ (x), u(x,l) = ¢P1(x) a.e. on [0,1].

It suffices to prove the validity of (7) for w(0,t) = u(t), u(l,t) = v(t) and for any
function ®(z,t) in Definition 3. By (25) one has to prove the equality

1 L1 1 l
//uggmt (x,t)dxdt— //utxt<1>t:vtda:dt //f xtdmdt:/i/)
00 00 00 0

(30)
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Consider the function

%[gp(m—l—t)—f(x—t)—i—l/A)(:L‘—i-t)—i-@(m—At)—i—I(x,t)]in A1,

He@+t)+d@+t) —pr(x —t+ 1) +di(z —t+1)—
l
Jﬂx—t+n7ﬂ7+[@jmnA%

U, t) = (e —t) —p(x —t) +pr(z +t — 1) + i (x +t —1)—

L
E]ff(;ls—l—t—T,T)dT—i—I(;I:,t)]in A3,

%[ e+t —1)—pile—t+1) +d1(z+t— 1)+
+ipy (@ —t+1) — K(2,t) + I(x,t)]in Oy

where I(:L‘,t):ftf(a:—l—t—T, T)dT ftf(a:—t—l—T, T)dT, K fl flx+t—m7,7)dr +
0 0 0

flx—t+7,7)dr.

o

Similarly, for the function w(z,t) one can prove that U(z,t) belongs to W;(Ql) and
easily verify that the relations Uy (z,t) = w(x,t), Uy(z,t) — f(x,t) = uy(x,t) hold a.e. in
the rectangle Q.

Using these relations and the properties of ®(z,t) from Definition 3 we obtain

jjﬁxxt (z,t)dzdt — jmxt@ﬂmthiijxt(xwmﬁ
O/{/U(fft) ﬂftdt}dw—/{/ f(@, )@, (x, t)dx}dt — /{/ (2,)®¢ (, t)da }dt—

l

_//NMWWMMﬁ:/Umw%@@@_/Umm%@mM_
0 0

0

1
//U x,t) Py (z, t)dxdt—
0 0

l l

l l l
/Uawgawm+/Umw@0tﬁ+//bxt¢mxtwﬁ / O(1,t)dt+
0 0 0 0

0
+0/lf(0,t)<1>(0,t)dt+0/l0/lf (z,t)dedt — O/lo/lf (2,t)®(z, t)dxdt =

O\N
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l l l
Ul(x (2,0)dx = [ w(x,0)®(x,0)de = [ ¢Y(z)P(x,0)dx
o[ romte= | /

Equality (30) is established. Thus, the theorem is proved.

Remark 1. In [12] it is shown that the interval (0,1) is the minimum time interval over
which for arbitrary five functions (x),1(x),¥(x),11(x) and f(x,t) which belong to the
classes (*) and satisfy the conditions (13) and (14), one can transfer the oscillatory system
from the initial state to the final one. In the case when T <1, in order to implement such
a transition one needs to impose additional conditions on all of these functions.

Remark 2. Important special cases of the problem under consideration are as follows.

1)The Problem of Damping the Oscillatory Process, i.e. the problem of finding the
boundary controls yu(t) and v(t) that for arbitrarily given initial shift ¢(x) € W4[0,1] and
initial velocity 1(x) € L2[0,], transit the process to the full rest at ¢ = [.

2) The problem of finding boundary controls u(t) and v(t) which transfer the string
from its initial rest (i.e. when the initial conditions equal zero) to the state with any
given shift ¢;(z) € W4[0,1] and any given velocity vy (z) € La[0,1] (the excitation of an
oscillatory process).

One can easily derive the relevant statements from the main theorem.

Taking this opportunity the author expresses his deep gratitude to Associate Profes-
sor L. V. Kritskov for useful discussions and his support and guidance throughout this
research.
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