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Estimation of Fixed Points of Hardy and Rogers
Generalized Non-Expansive Mappings
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Abstract. In the present paper, we study a three-step iterative scheme to approximate
the fixed points of Hardy and Rogers generalized non-expansive mappings. Some weak
and strong convergence results are proved for such mappings in uniformly convex Banach
spaces. Further, it is showed numerically that the considered iterative scheme has a
better speed of convergence than some known and leading schemes for generalized non-
expansive mappings. The results of this paper are the refinement and generalization of
several relevant results in the literature.
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1. Introduction

Throughout the paper, Z+ denotes the set of all nonnegative integers. We
consider that C is a nonempty subset of a Banach space X and F (T ), the set
of all fixed points of the mapping T on C. A mapping T : C → C is said to
be non-expansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. It is called quasi
non-expansive if F (T ) 6= ∅ and ‖Tx− p‖ ≤ ‖x− p‖, for all x ∈ C and p ∈ F (T ).

The study of fixed points of non-expansive mappings and its generalized forms
is more complicated as compared to the study of fixed points of contractive map-
pings. The fixed point theory of contractiveness rotates around the Banach con-
traction principle wherein the fixed point of a contraction can be approximated
by Picard iterative scheme in complete metric space. But in general, fixed points
of non-expansive mappings can’t be approximated by the same scheme. The ap-
proximating fixed points of non-expansive and its generalized mappings has been
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studied in a variety of ways and its applications in the theory of optimization,
variational inequality problems, convex feasibility problems are fairly well known.

In 1973, Hardy and Rogers [1] introduced the concept of generalized non-
expansive mapping which is defined as follows:
A self map T on a nonempty subset C of a Banach space X is called generalized
non-expansive if for all x, y ∈ C,

‖Tx−Ty‖ ≤ a1‖x−y‖+a2‖x−Tx‖+a3‖y−Ty‖+a4‖x−Ty‖+a5‖y−Tx‖, (1)

where a1, ..., a5 are nonnegative real numbers with a1 + a2 + a3 + a4 + a5 ≤ 1.
The condition (1) appears to be quite natural from a geometric point of view. It
is obvious that condition (1) is equivalent to the following condition (cf. [2]).

‖Tx− Ty‖ ≤ a‖x− y‖+ b(‖x− Tx‖+ ‖y− Ty‖) + c(‖x− Ty‖+ ‖y− Tx‖), (2)

for all x, y ∈ C, where a, b, c are nonnegative constants with a+ 2b+ 2c ≤ 1 and
a = a1, b = a2+a3

2 , c = a4+a5
2 .

It is well known that if T has a fixed point then T is quasi non-expansive
mapping. Thus, the class of generalized non-expansive mappings is bigger than
the class of non-expansive mappings and smaller than the class of quasi non-
expansive mappings. The existence and convergence theorems for non-expansive
and generalized non-expansive mappings have been studied by notable authors,
e.g. see [3, 4, 5].

Quite recently, Ali et al. [6] proved the following eminent lemma for the
generalized non-expansive mappings due to Hardy and Rogers.

Lemma 1. [6] Let C be a nonempty subset of a Banach space X and T : C → C
a generalized non-expansive mapping satisfying (2). Then

‖x− Ty‖ ≤ ‖x− y‖+
1 + b+ c

1− b− c

∥∥∥x− Tx∥∥∥, ∀x, y ∈ C.
We observe the following fact.

Remark 1. Every generalized non-expansive mapping due to Hardy and Rogers
satisfies condition (E) due to Garćia-Falset et al. [7] for µ = 1+b+c

1−b−c ≥ 1.

In 2008, Suzuki [8] introduced generalized non-expansive mapping, also called
condition (C) on mapping which is defined as follows:
A self map T on a nonempty subset C of a Banach space X is said to satisfy
condition (C) if,

1

2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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Suzuki proved existence of fixed point and convergence theorems for such map-
pings. Suzuki also showed that every non-expansive mapping satisfies condition
(C), but the converse is not true in general. Moreover, if T satisfies condition (C)
and has at least one fixed point, then it is quasi non-expansive mapping. Thus
the notion of mappings satisfying condition (C) is weaker than non-expansiveness
and stronger than quasi non-expansiveness.

From the beginning of the twentieth century, a large number of eminent re-
searchers studied and proved the existence of a fixed point of various classes of
linear and nonlinear mappings in various classes of space. So, it is natural to
consider the question that: “when the existence of a fixed point of an operator
is accomplished, then how to find the fixed point”? The fixed point of a linear
or nonlinear mapping can find out by the two types of methods: (i) the direct
methods and (ii) iterative methods. Sometimes, direct method fails to find the
fixed point of a mapping due to various reasons, so iterative methods take the
place to find the fixed point. Thus the iterative approximations of fixed points
become a major tool in the fixed point theory and applied mathematics.
Since Picard iterative scheme need not converge to the fixed point of non-expansive
mapping even map has a fixed point. So in 1953, Mann [9] introduced an it-
erative scheme which has been extensively used to approximate fixed point of
non-expansive mappings. In this scheme the sequence {xn} is generated by an
arbitrary point x0 ∈ C and defined in the following manner:

xn+1 = (1− an)xn + anTxn, n ∈ Z+, (3)

where {an} is a sequence in (0, 1).
In 1974, Ishikawa [10] introduced a two-step iterative scheme to approximate

fixed point of pseudo contractive mappings. In this scheme the sequence {xn} is
generated by an arbitrary point x0 ∈ C and defined as follows:{

xn+1 = (1− an)xn + anTyn,
yn = (1− bn)xn + bnTxn , n ∈ Z+,

(4)

where {an} and {bn} are sequences in (0, 1).
In 2000, Noor [11] introduced the following three-step iterative scheme for the

solution of general variational inequalities. In this scheme the sequence {xn} is
generated by an arbitrary point x0 ∈ C and defined as follows:

xn+1 = (1− an)xn + anTyn,
yn = (1− bn)xn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ Z+,

(5)

where {an}, {bn} and {cn} are sequences in (0, 1).
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In 2007, Agrawal et al. [12] introduced the following two-step iterative scheme,
called S iterative scheme and approximated the fixed points of nearly asymptoti-
cally non-expansive mappings in uniformly convex Banach spaces. In this scheme
the sequence {xn} is generated by an arbitrary guess x0 ∈ C and defined in the
following manner: {

xn+1 = (1− an)Txn + anTyn,
yn = (1− bn)xn + bnTxn, n ∈ Z+,

(6)

where {an} and {bn} are sequences in (0, 1). They also claimed that this scheme
converges to a fixed point of a contraction at the rate same as Picard iterative
scheme and faster than the Mann scheme.

In 2014, Abbas and Nazir [13] introduced the following three-step iterative
scheme to approximate fixed points of non-expansive mappings in uniformly con-
vex Banach space. In this scheme the sequence {xn} is generated by an initial
guess x0 ∈ C and defined as follows:

xn+1 = (1− an)Tyn + anTzn,
yn = (1− bn)Txn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ Z+,

(7)

where {an}, {bn} and {cn} are sequences in (0, 1). Also, they claimed that this
scheme converges to a fixed point of a contraction faster than S iterative scheme
(6).

Recently, Sahu et al. [14] and Thakur et al. [15] introduced the following same
iterative scheme, independently to approximate the fixed points of non-expansive
mappings in uniformly convex Banach spaces. In this scheme the sequence {xn}
is generated by an initial point x0 ∈ C and defined in the following manner:

xn+1 = (1− an)Tzn + anTyn,
yn = (1− bn)zn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ Z+,

(8)

where {an}, {bn} and {cn} are sequences in (0, 1). They proved that this scheme
converges to a fixed point of contraction faster than Picard, Mann, Ishikawa,
Noor, S and Abbas iterative schemes. They also presented an example to support
their claim.

In 1981, Bose and Mukherjee [16] proved that the Mann iterative scheme
converges strongly to the fixed point of generalized non-expansive mappings due
to Hardy and Rogers in uniformly convex Banach spaces. In process, Maiti
and Ghosh [17] proved strong convergence theorem for the same mappings via
Ishikawa iterative scheme in uniformly convex Banach spaces. While Park [18]
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proved weak convergence result for the same mappings via Mann iterative scheme
in uniformly convex Banach spaces.

Very recently, Ali et al. [19] approximated the fixed points of Suzuki’s gen-
eralized non-expansive mappings via iterative scheme (8) in uniformly convex
Banach spaces. Since the mappings due to Hardy and Rogers and, Suzuki are
generalized non-expansive. So, most recently, Ali et al. [6] compared the general-
ized non-expansive mappings due to Suzuki and, Hardy and Rogers and showed
that both the mappings do not imply each other. Also, the class of generalized
non-expansive mappings due to Hardy and Rogers is very natural than the class
of mappings satisfying Suzuki’s condition (C).

So, motivated by the above, we prove some weak and strong convergence
results for generalized non-expansive mappings due to Hardy and Rogers via it-
erative scheme (8) in uniformly convex Banach spaces. Further, we show numer-
ically that the scheme (8) converges to fixed points of generalized non-expansive
mapping faster than Mann, Ishikawa, Noor, S and Abbas iterative schemes. The
results of the present paper are different from the results of Ali et al. [19] and
generalize several relevant results in the literature and particularly those which
are contained in Sahu et al. [14] and Thakur et al. [15].

2. Preliminaries

We now recall some definitions and lemmas to be used in the main results.

Definition 1. (cf. [20]) A Banach space X is called uniformly convex if for each
ε ∈ (0, 2] and for all x, y ∈ X, with ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε there is a
δ = δ(ε) > 0 such that ‖x+y2 ‖ ≤ 1− δ.

Definition 2. [21] Let C be a nonempty, closed and convex subset of a Banach
space X. A mapping T : C → X is called demiclosed with respect to y ∈ X, if
for each sequence {xn} in C and each x ∈ C, {xn} converges weakly at x and
{Txn} converges strongly at y imply that Tx = y.

Definition 3. A Banach space X is said to satisfy Opial’s condition [22] if for
each weakly convergent sequence {xn} to x ∈ X,

lim
n→∞

inf ‖xn − x‖ < lim
n→∞

inf ‖xn − y‖

holds, for all y ∈ X, with y 6= x.

Definition 4. Let C be a nonempty closed convex subset of a Banach space X
and let {xn} be a bounded sequence in X. For x ∈ X, we set

r(x, {xn}) = lim
n→∞

sup ‖xn − x‖.
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The asymptotic radius of {xn} relative to C is defined by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.

The asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

It is known that in a uniformly convex Banach space, A(C, {xn}) consists exactly
one point.

Lemma 2. [23] Suppose X is a uniformly convex Banach space and 0 < p ≤
tn ≤ q < 1 for all n ≥ 1. Let {xn} and {yn} be two sequences of X such that
lim
n→∞

sup ‖xn‖ ≤ r, lim
n→∞

sup ‖yn‖ ≤ r and lim
n→∞

sup ‖tnxn + (1− tn)yn‖ = r hold,

for some r ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

Lemma 3. [6] Let T : C → C be a generalized non-expansive mapping sat-
isfying (2), where C is a nonempty closed and convex subset of a uniformly
convex Banach space X. If the sequence {xn} converges weakly to x ∈ C and
lim
n→∞

‖xn − Txn‖ = 0, then Tx = x. That is, I − T is demiclosed at zero.

Lemma 4. [24] Let T be a generalized non-expansive mapping on a weakly com-
pact convex subset Y of a uniformly convex Banach space X satisfying (2). Then
T has a fixed point.

3. Main Results

In this section, we prove some weak and strong convergence results for general-
ized non-expansive mappings satisfying (2) via iterative scheme (8) in uniformly
convex Banach spaces. First, we establish the following useful lemmas for the
next results.

Lemma 5. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T : C → C a generalized non-expansive mapping. Let {xn}
be a sequence defined by iterative scheme (8), then lim

n→∞
‖xn − p‖ exists for all

p ∈ F (T ).

Proof. Since T is a generalized non-expansive mapping, so we can easily
obtain that

‖Txn − p‖ ≤ ‖xn − p‖, ∀xn ∈ C, p ∈ F (T ).
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Now, by iterative scheme (8), we get

‖zn − p‖ = ‖(1− cn)xn + cnTxn − p‖
≤ (1− cn)‖xn − p‖+ cn‖Txn − p‖
≤ (1− cn)‖xn − p‖+ cn‖xn − p‖
= ‖xn − p‖. (9)

Using (9), we obtain that

‖yn − p‖ = ‖(1− bn)zn + bnTzn − p‖
≤ (1− bn)‖zn − p‖+ bn‖Tzn − p‖
≤ (1− bn)‖zn − p‖+ bn‖zn − p‖
= ‖zn − p‖ ≤ ‖xn − p‖. (10)

Again using (9) and (10), we get

‖xn+1 − p‖ = ‖(1− an)Tzn + anTyn − p‖
≤ (1− an)‖Tzn − p‖+ an‖Tyn − p‖
≤ (1− an)‖zn − p‖+ an‖yn − p‖
≤ (1− an)‖xn − p‖+ an‖xn − p‖
= ‖xn − p‖. (11)

This means that, the sequence {‖xn − p‖} is non-increasing and bounded below
for all p ∈ F (T ). Hence, lim

n→∞
‖xn − p‖ exists. J

Lemma 6. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T : C → C a generalized non-expansive mapping. Let {xn}
be a sequence defined by iterative scheme (8). Then F (T ) 6= ∅ if and only if {xn}
is bounded and lim

n→∞
‖xn − Txn‖ = 0.

Proof. Suppose F (T ) 6= ∅ and p ∈ F (T ). Then by Lemma 5, lim
n→∞

‖xn − p‖
exists and {xn} is bounded. Assume that

lim
n→∞

‖xn − p‖ = α. (12)

From (9), (10) and (12), we have

lim
n→∞

sup ‖zn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (13)

lim
n→∞

sup ‖yn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (14)
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Since T is a generalized non-expansive mapping, we have

‖Txn − p‖ = ‖Txn − Tp‖ ≤ ‖xn − p‖

=⇒ lim
n→∞

sup ‖Txn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (15)

Similarly,

lim
n→∞

sup ‖Tyn − p‖ ≤ lim
n→∞

sup ‖yn − p‖ ≤ α. (16)

lim
n→∞

sup ‖Tzn − p‖ ≤ lim
n→∞

sup ‖zn − p‖ ≤ α. (17)

Again,

α = lim
n→∞

‖xn+1 − p‖ = lim
n→∞

‖(1− an)Tzn + anTyn − p‖

= lim
n→∞

‖(1− an)(Tzn − p) + an(Tyn − p)‖. (18)

From (16), (17), (18) and using Lemma 2, we have

lim
n→∞

‖Tzn − Tyn‖ = 0. (19)

Now,

‖xn+1 − p‖ = ‖(1− an)Tzn + anTyn − p‖ ≤ ‖Tzn − p‖+ an‖Tyn − Tzn‖.

Taking the lim inf on both sides, we get

α = lim
n→∞

inf ‖xn+1 − p‖ ≤ lim
n→∞

inf ‖Tzn − p‖

≤ lim
n→∞

inf ‖zn − p‖. (20)

So that, (13) and (20) give,

lim
n→∞

‖zn − p‖ = α.

Thus,

α = lim
n→∞

‖zn − p‖ = lim
n→∞

‖(1− cn)xn + cnTxn − p‖

= lim
n→∞

‖(1− cn)(xn − p) + cn(Txn − p)‖. (21)

From (12), (15), (21) and using Lemma 2, we have

lim
n→∞

‖xn − Txn‖ = 0.
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Conversely, assume that {xn} is bounded and lim
n→∞

‖xn − Txn‖ = 0. Let p ∈
A(C, {xn}), then using Lemma 1, we have

r(Tp, {xn}) = lim
n→∞

sup ‖xn − Tp‖

≤ lim
n→∞

sup(‖xn − p‖+
1 + b+ c

1− b− c
‖Txn − xn‖)

= lim
n→∞

sup ‖xn − p‖

= r(p, {xn}) = r(C, {xn}).

This means that, Tp ∈ A(C, {xn}). Since X is uniformly convex, A(C, {xn}) is
singleton, hence Tp = p. This completes the proof. J

Now, we prove weak and strong convergence results for generalized non-
expansive mappings satisfying (2) via iterative scheme (8).

Theorem 1. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T : C → C a generalized non-expansive mapping. Assume
that X satisfies the Opial’s condition, then the sequence {xn} defined by iterative
scheme (8) converges weakly to a point of F (T ).

Proof. In view of Lemma 5, the lim
n→∞

‖xn − p‖ exists for all p ∈ F (T ). Now,

we prove that {xn} has a unique weak sub-sequential limit in F (T ). Let x and
y be weak limits of the subsequences {xni} and {xnj} of the sequence {xn},
respectively. By Lemma 6, lim

n→∞
‖xn − Txn‖ = 0 and I − T is demiclosed at zero

by Lemma 3. This implies that, (I − T )x = 0, that is x = Tx, similarly Ty = y.
Next, we show uniqueness. If x 6= y, then by Opial’s condition,

lim
n→∞

‖xn − x‖ = lim
ni→∞

‖xni − x‖ < lim
ni→∞

‖xni − y‖

= lim
n→∞

‖xn − y‖ = lim
nj→∞

‖xnj − y‖

< lim
nj→∞

‖xnj − x‖

= lim
n→∞

‖xn − x‖.

This is a contradiction, so x = y. Consequently, {xn} converges weakly to a point
of F (T ). This completes the proof. J

Theorem 2. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T : C → C a generalized non-expansive mapping. Then the
sequence {xn} defined by iterative scheme (8) converges strongly to a point of
F (T ) if and only if lim

n→∞
inf d(xn, F (T )) = 0, where d(xn, F (T )) = inf{‖xn − p‖ :

p ∈ F (T )}.
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Proof. Necessity is obvious.
Conversely, assume that lim

n→∞
inf d(xn, F (T )) = 0 and p ∈ F (T ). By Lemma 5,

lim
n→∞

‖xn − p‖ exists, for all p ∈ F (T ) and lim
n→∞

d(xn, F (T )) = 0 by assumption.

Now, we will show that {xn} is a Cauchy sequence in C. As lim
n→∞

d(xn, F (T )) = 0,

for a given ε > 0, there exists m0 ∈ Z+ such that for all n ≥ m0

d(xn, F (T )) <
ε

2

or inf{‖xn − p‖ : p ∈ F (T )} <
ε

2
.

In particular, inf{‖xm0 − p‖ : p ∈ F (T )} < ε
2 . Therefore there exists p ∈ F (T )

such that
‖xm0 − p‖ <

ε

2
.

Now for m,n ≥ m0,

‖xn+m − xn‖ ≤ ‖xn+m − p‖+ ‖xn − p‖
≤ ‖xm0 − p‖+ ‖xm0 − p‖
= 2‖xm0 − p‖ < ε.

That is, {xn} is a Cauchy sequence in C. As C is a closed subset of a Banach
space X, so there exists a point q ∈ C such that lim

n→∞
xn = q. By assumption,

lim
n→∞

d(xn, F (T )) = 0 which gives d(q, F (T )) = 0 =⇒ q ∈ F (T ). J

Theorem 3. Let C be a nonempty compact and convex subset of a uniformly
convex Banach space X and T : C → C a generalized non-expansive mapping.
Then the sequence {xn} defined by iterative scheme (8) converges strongly to a
fixed point of T .

Proof. In view of Lemma 6, we have lim
n→∞

‖Txn−xn‖ = 0. Since C is compact,

there exists a subsequence {xnj} of {xn} such that xnj → p strongly for some
p ∈ C. By Lemma 1, we have

‖xnj − Tp‖ ≤ ‖xnj − p‖+
1 + b+ c

1− b− c
‖Txnj − xnj‖, ∀j ≥ 1.

Letting j →∞, we get that xnj → Tp. This implies that Tp = p, i.e., p ∈ F (T ).
Also, lim

n→∞
‖xn−p‖ exists by Lemma 5. Thus, p is the strong limit of the sequence

{xn}. J

In 1974, Senter and Dotson [25] introduced the notion of condition (I) on the
mappings which is defined as follows:
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Definition 5. A mapping T : C → C is said to satisfy condition (I), if there
exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0,
for all r > 0 such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ C.

We now prove a strong convergence result using condition (I).

Theorem 4. Let C be a nonempty closed and convex subset of a uniformly convex
Banach space X and T : C → C a generalized non-expansive mapping which
satisfies condition (I). Then the sequence {xn} defined by iterative scheme (8)
converges strongly to a fixed point of T .

Proof. We proved in Lemma 6 that

lim
n→∞

‖xn − Txn‖ = 0. (22)

By using condition (I) and (22), we get

0 ≤ lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

‖xn − Txn‖ = 0

=⇒ lim
n→∞

f(d(xn, F (T ))) = 0.

Since f : [0,∞)→ [0,∞) is a nondecreasing function satisfying f(0) = 0, f(r) >
0, ∀r > 0, hence we have

lim
n→∞

d(xn, F (T )) = 0.

Now, all the conditions of Theorem 2 are satisfied therefore by its conclusion {xn}
converges strongly to a fixed point of T . J

Since every non-expansive mapping is a generalized non-expansive due to
Hardy and Rogers, so we have the following remark.

Remark 2. All the results in this paper generalize the corresponding results of
Sahu et al. [14], Thakur et al. [15] and many others because mappings here are
generalized non-expansive and iterative scheme is more general than the others.

4. An Illustrative Numerical Example

In this section, we furnish the following example to approximate the fixed
point of generalized non-expansive mapping satisfying (2) via iterative scheme
(8) and also compare rate of convergence of considered iterative scheme with
some leading schemes for the same mapping.
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Example 1. Let X = R be a Banach space with the usual norm and C = [0,∞)
a subset of X. Define a mapping T : C → C by

Tx =


1
3sinx, if x ∈ [0, π2 ]

1
6sinx, if x ∈ (π2 ,∞).

Here T is a generalized non-expansive mapping due to Hardy and Rogers but not
a non-expansive mapping and T has a unique fixed point 0.

Verification. It is obvious that the mapping T is discontinuous at x = π
2 and

hence not a non-expansive mapping because non-expansive mappings are contin-
uous. Now, we have the following cases:

Case-I If x, y ∈ [0, π2 ], then

‖Tx− Ty‖ =

∥∥∥∥1

3
sinx− 1

3
siny

∥∥∥∥ ≤ 1

3
‖x− y‖+

3

5

[∥∥∥∥x− 1

3
sinx

∥∥∥∥+

∥∥∥∥y − 1

3
siny

∥∥∥∥].
Case-II If x, y ∈ (π2 ,∞), then

‖Tx− Ty‖ =

∥∥∥∥1

6
sinx− 1

6
siny

∥∥∥∥ ≤ 1

3
‖x− y‖+

3

5

[∥∥∥∥x− 1

6
sinx

∥∥∥∥+

∥∥∥∥y − 1

6
siny

∥∥∥∥].
Case-III If x ∈ [0, π2 ] and y ∈ (π2 ,∞), then

‖Tx− Ty‖ =

∥∥∥∥1

3
sinx− 1

6
siny

∥∥∥∥ ≤ 1

3
‖x− y‖+

3

5

[∥∥∥∥x− 1

3
sinx

∥∥∥∥+

∥∥∥∥y − 1

6
siny

∥∥∥∥].
Case-IV If x ∈ (π2 ,∞) and y ∈ [0, π2 ], then

‖Tx− Ty‖ =

∥∥∥∥1

6
sinx− 1

3
siny

∥∥∥∥ ≤ 1

3
‖x− y‖+

3

5

[∥∥∥∥x− 1

6
sinx

∥∥∥∥+

∥∥∥∥y − 1

3
siny

∥∥∥∥].
Hence, for a = 1

3 , b = 3
5 and c = 0 (a + 2b + 2c = 14

15 < 1) T is a generalized
non-expansive mapping.

With the help of Matlab program Software 2015a, we compute that the se-
quence {xn} defined by iterative iterative scheme (8) converges faster than some
known and leading iterative schemes to a fixed point 0 of T which is shown by
Table 1 and Figure 1. For this, we choose control sequences in (0, 1) as follows:
an = 28n+1

30n+2 , bn = 3n+1
20n+2 and cn = 9n+1

19n+2 and initial guess x0 = 1.2.
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Iter. Sahu-Thakur Mann Ishikawa Noor S Abbas

1 1.2000000 1.2000000 1.2000000 1.2000000 1.2000000 1.2000000
2 0.2113311 0.3940535 0.3727584 0.3705836 0.2893847 0.2208345
...

...
...

...
...

...
...

12 0.0000000 0.0000252 0.0000099 0.0000085 0.0000017 0.0000001
13 0.0000000 0.0000096 0.0000034 0.0000029 0.0000005 0.0000000
14 0.0000000 0.0000036 0.0000012 0.0000010 0.0000002 0.0000000
15 0.0000000 0.0000014 0.0000004 0.0000003 0.0000000 0.0000000
16 0.0000000 0.0000005 0.0000001 0.0000001 0.0000000 0.0000000
17 0.0000000 0.0000002 0.0000001 0.0000000 0.0000000 0.0000000
18 0.0000000 0.0000001 0.0000000 0.0000000 0.0000000 0.0000000
19 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 1: Comparison of speed of the convergence of different iterative schemes.
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Figure 1: Convergence behavior of the sequences defined by different iterative schemes.
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