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1. Introduction

We consider the quasilinear system of equations

Dx = Bx+ f(τ, t, x), (1)

for x = (x1, ..., xn) with a vector and matrix differentiation operator D

Dx ≡ ∂x

∂τ
+

m∑
k=1

Ak
∂x

∂tk
, (2)

where Ak and B are constant n×n-matrices; f(τ, t, x) = (f1(τ, t, x), ..., fn(τ, t, x))
is a vector-function of independent variables τ ∈ R, t = (t1, ...tm) ∈ Rm;
x ∈ Rn∆ = {x ∈ Rn : |x| = max

j=1,n
|xj | ≤ ∆} is a required vector-function.

Assume that each of the matrices Ak has different real nonzero eigenvalues

λkj = λj(Ak) 6= 0, λki 6= λkj , i 6= j, λkj ∈ R, i, j = 1, n. (3)
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Under condition (3), equation (1) is of hyperbolic type [1, p. 59], [2, p. 9].

The vector-function f(τ, t, x) has the properties of (θ, ω)-periodicity in (τ, t),
continuity and smoothness on (τ, t, x) ∈ R× Rm × Rn∆ of order (0, e, ê):

f(τ + θ, t+ ω, x) = f(τ, t, x) ∈ C(0,e,ê)
τ,t,x (R× Rm × Rn∆),

with rationally incommensurable periods θ, ω1, ..., ωm, ω = (ω1, ..., ωm), where e
and ê are vectors with unit components of dimensions m and n, respectively.

Our problem is stated as follows: establish the existence conditions for the
solutions of initial value problem and the multiperiodic solutions of equation
(1)-(2) which satisfy the conditions

x(τ, t)|τ=τ0 = x0(t+ ω) = x0(t) ∈ C(e)
t (Rm), (4)

x(τ + θ, t+ ω) = x(τ, t) ∈ C(1,e)
τ,t (R× Rm), |x| ≤ ∆, (5)

respectively.

Nonlinear Euler equations from hydromechanics, which are called equations
of fluid dynamics [3, p. 214], can be reduced to the form (1)-(2).

Quasilinear analogs of these equations describe various wave processes re-
lated to environments of noninteracting particles that belong to different types
of systems of equations, in particular, to the strictly hyperbolic one.

When studying systems of such types, passing from the field of a continuous
medium to particles, in many cases it is possible to find their close connection
with systems of ordinary equations. The method of reduction of this nature is
the art of solving problems for systems of partial differential equations. This
principle is followed by the majority of researchers in this field. In this regard,
as an example, we can note the approach of the study in the book [4], which is
based on the hodograph method.

Studies of strongly hyperbolic systems, as noted above, often find application
in applied problems, which is of some interest. Systems of this kind can also be
encountered in theoretical developments. For the sake of fairness, we note that
in [5] these systems appear in the study of problems about manifolds.

The problem under consideration is related to wave processes, therefore, they
are described by globally defined solutions [6], which have oscillatory properties,
in particular, periodic and multiperiodic [7, 8].

Also note that the study of waves that are almost periodic with respect to
time leads to the study of multiperiodic solutions of such systems.

The research of a problem of this nature, as a rule [1, 2, 3], begins with the
reduction to the canonical form of the differential operators of systems.
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For this purpose, we reduce the equation (1)-(2) to the form

D∗y = Cy + ϕ(τ, t, y) (6)

with differentiation operator

D∗ ≡ ∂

∂τ
+

m∑
k=1

Jk
∂

∂tk
(7)

on the basis of condition (3) and the linear nonsingular replacement

x = Ky, (8)

assuming

Jk = K−1AkK, C = K−1BK, ϕ(τ, t, y) = K−1f(τ, t,Ky).

Then the initial condition (4) and the multiperiodicity condition (5), by virtue
of the substitution (8), become

y(τ, t)|τ=τ0 = K−1x0(t) = y0(t) ∈ C(e)
t (Rm), (9)

y(τ + θ, t+ qω) = y(τ, t) ∈ C(1,e)
τ,t (R× Rm), |y| ≤ ∆∗, (10)

where ∆∗ = ∆/ |K| , |K| = max
j=1,n

n∑
j=1
|kij |.

Thus, the main problem of this paper is to develop the methods for establish-
ing the existence of and constructing the solutions for the initial value problem
and the problem (6)-(7), with to the conditions (9) and (10).

The methods of the theory of multiperiodic solutions of systems of partial
differential equations are of fundamental importance for our problem. This theory
that dates back to [9, 10, 11] and was further developed in [12, 13, 14, 15] allows to
make special generalizations for the systems of hyperbolic type like in [11, 16, 17]
related to our work.

Note that in the field of problems of this nature, there are two types of
problems:

1) The problem of reducing the system (1) with operator (2) to the system
(6) with operator (7) when the number m of variables tk is more than one (i.e.
when there are many of them). In this case, this barrier is overcome by condition
(3).

2) The problem of controlling the characteristics corresponding to the vari-
ables tk and the operator D∗

j . In this regard, it should be noted that the condition
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(3) simplifies, but does not fully solve the problem. In this simplified version, dif-
ferent differentiation operators D∗

j correspond to different equations. Therefore,
when solving the problem, different coordinates yj of the required vector solution
y are integrated along different characteristics tkj = hkj , corresponding to the
variables tk and operators D∗

j . In other words, the same variable tk corresponds
to the n characteristics hkj , and it becomes difficult to determine where and by
what characteristic yj should be integrated, when the latter is determined by
others yi’s, containing the same variables tk.

In general, this issue has not yet been studied and remained open. We have
proposed a new method that allows us to completely solve this problem.

2. Research method

From the form (9) of the operator D∗ = (D∗
1, ..., D

∗
n), it can be seen that each

coordinate yj of the required solution y is determined by D∗
j yj , which has its own

characteristics tkj = hkj corresponding to the variable tk along which solution y
is considered. In order to ensure the consideration of yj on the characteristics hkj
by variables tk, it becomes necessary to 1) assign tk an identical designation tkj
with respect to j, and 2) ensure the transition from tkj to tki in the case where
yi is defined by yj .

Thus, we introduce an operator Π = diag [Π1, ...Πn] that acts on a vector-
function y(τ, t) = [yj(τ, t1, ...tm)] as follows:

Πy(τ, t1, ...tm) = [Πjyj(τ, t1, ...tm)] = [yj(τ, t1j , ...tmj)] =

=
[
yj(τ, tj)

]
= y(τ, t),

where t = (t1, ..., tn), tj = (t1j , ..., tmj). Obviously, the operator Π is invertible.
In the sequel, we consider a space S of vector and matrix functions of variables

(τ, t), which in the case of a vector-function have the form x(τ, t) =
[
xi(τ, ti)

]
and in the case of a matrix are written in the form X(τ, t) =

[
xij(τ, ti)

]
, where

the i-th row of matrices is expressed by (τ, ti) ∈ R× Rmn.
Now we introduce operators Pi = diag [pi1, ..., pin] with projectors pij for

the transition from the j-th coordinate of variables tj to the i-th coordinate of
variables ti of the functions from the space S : pijtj = ti.

Further, we give the necessary rules for the action of operators Pi which are
used in the product and composition of vector and matrix functions from S.

(a) The projectors pij act on the scalar coordinate function xj(τ, tj) as follows:
pijxj(τ, tj) = xj(τ, pijtj) = xj(τ, ti). The matrix projector Pi acts on the vector-
function x(τ, t) =

[
xj(τ, tj)

]
as follows:

Pix(τ, t) =
[
pijxj(τ, tj)

]
=
[
xj(τ, pijtj)

]
=
[
xj(τ, ti)

]
.
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(b) We define the operation of the product of a matrix X(τ, t) and a vector-
function xj(τ, tj) by means of the projector Pi as follows:

y(τ, t) = X(τ, t)× x(τ, t) = Pi
[
xij(τ, ti)

] [
xi(τ, ti)

]
=
[
xij(τ, ti)pij

] [
xi(τ, ti)

]
=

=

[∑
j

xij(τ, ti)pijxj(τ, tj)

]
=

[∑
j

xij(τ, ti)xj(τ, ti)

]
=
[
yij(τ, ti)

]
∈ S,

where the sign of the product ”×” means the preliminary supply of the elements
of the matrix X by the projector Pi when it is produced with the vector-function
x.

(c) The product Z(τ, t) of matrices X(τ, t) and Y (τ, t) is defined by the rela-
tion

Z(τ, t) = X(τ, t)× Y (τ, t) = Pi
[
xij(τ, ti)

] [
yij(τ, ti)

]
=

=

[ n∑
r=1

xir(τ, ti)piryrj(τ, tr)

]
=

[ n∑
r=1

xir(τ, ti)yrj(τ, ti)

]
=
[
zij(τ, ti)

]
∈ S.

(d) A composition ϕ = f ⊗x with projector Pi of vector-functions f(τ, t, x) =[
fi(τ, ti, x)

]
and x(τ, t) =

[
xi(τ, ti)

]
is defined by the relation

ϕ(τ, t) = (f ⊗ x)(τ, t) = (Pif ◦ x)(τ, t) =
[
fi(τ, ti, Pix(τ, t))

]
=

=
[
fi(τ, ti, Pi

[
xj(τ, tj)

]
)
]

=
[
fi(τ, ti,

[
pijxj(τ, tj)

]
)
]

=
[
fi(τ, ti,

[
xj(τ, pijtj)

]
)
]

=

=
[
fi(τ, ti,

[
xj(τ, ti)

]
)
]

=
[
ϕi(τ, ti)

]
∈ S,

where the sign of the composition ”⊗” means the preliminary supply of the
elements of the matrix f by the projector Pi when composing it with the vector-
function x.

Now we define vector and matrix functions from the space S along the char-
acteristics hi(τ

0, τ, ti)) of differentiation operators Di.

(e) The vector-function x(τ, t) =
[
xi(τ, ti)

]
on the characteristic is defined by

assignment of the form (τ, ti) := (τ0, hi(τ
0, τ, ti)) and we have the relation

x(τ0, h(τ0, τ, t)) =
[
xi(τ

0, hi(τ
0, τ, ti))

]
∈ S,

where hi(τ
0, τ, ti) = (h1i(τ

0, τ, t1i), ..., hni(τ
0, τ, tni)).

(f) Similarly, along the characteristic, the matrix X(τ, t) =
[
xij(τ, ti)

]
is de-

fined by the relation of the form

X(τ0, h(τ0, τ, t)) =
[
xij(τ

0, hi(τ
0, τ, ti))

]
∈ S.
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3. Main results

Now, based on the above concepts, from the problem with operator D in vari-
ables (τ, t), we pass to the study of the problem with operator D∗ in variables
(τ, t), in the process of which the essence of the proposed method of projectors is
revealed. For this purpose, taking into account the commutativity of the opera-
tors D∗ and Π, and using the operator Π from (6)-(7), we consider the problem
for the equation

D∗y(τ, t) = Cy(τ, t) + ϕ(τ, t, y(τ, t))

with the initial condition
y(τ, t)|τ=τ0 = y0(t).

We reduce this problem by means of the operator P = diag [P1, ..., Pn], to the
problem

D∗y(τ, t) = C × y(τ, t) + (ϕ⊗ y)(τ, t) (11)

with the conditions

y(τ, t)|τ=τ0 = y0(t) ∈ C(e)

t
(Rmn), (12)

y(τ + θ, t+ ω) = y(τ, t) ∈ C(1,e)

τ,t
(R× Rmn), |y| ≤ ∆∗, (13)

where ω = eω, e = (1, ..., 1) is an mn-vector.
Linear vector and matrix equations with differentiation operator on

the directions of characteristics. We consider the vector equation

D∗y(τ, t) = 0, (14)

which in the coordinate form breaks down into independent equations

D∗
j yj(τ, tj) = 0, (15)

with characteristic equations
dtkj
dτ

= λkj ,

from which the characteristics are defined as follows:

tkj = t0kj + λkj(τ − τ0) ≡ hkj(τ, τ0, t0kj).

If y0
j (tj) ∈ C

(e)

tj
(Rm) is an arbitrary differentiable function of the vector vari-

able tj , then, by virtue of tj = (t1j , ..., tnj) = (h1j(τ, τ
0, t01j), ..., hnj(τ, τ

0, t0nj)) =

hj(τ, τ
0, t

0
j ), according to [1], the function

yj(τ
0, τ, tj) = (y0

j ◦ hj)(τ0, τ, tj) = y0
j (hj(τ, τ

0, tj)) (16)
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is a solution of the equation (15) satisfying the condition (12), where hj(τ
0, τ, tj) =

(h1(τ, τ0, t
0
1), ..., hn(τ, τ0, t

0
n)).

Lemma 1. The problem (14), (12) is uniquely solvable and its solution can be
represented by the relation (16).

Now let us investigate the question of (θ, ω)-periodicity of solutions to this
problem.

Lemma 2. The vector and matrix equation (14) has a ω-periodic solution in tj
if and only if the initial function is ω-periodic in tj.

The proof of Lemma 2 follows from (16).

Since the initial function ỹ0
j (tj) ∈ C

(e)

tj
(Rm) is ω-periodic in tj , then, in the

case ỹ0
j 6= const, for the θ-periodicity of solution (16) in τ , it is necessary and

sufficient that the condition

λkjθ = lkjωk, lkj ∈ Z, (17)

is satisfied.
(θ, ω)-periodic in (τ, tj) solutions, subject to condition (17), are defined by

the formula (16) with a given initial function ỹ0
j (tj) as follows:

y∗(τ, h(τ0, τ, t)) = (ỹ0
1(τ, h1(τ0, τ, t1), ..., ỹ0

n(τ, hn(τ0, τ, tn)). (18)

Thus, the following lemma is proved.

Lemma 3. Let the conditions of Lemma 2 be satisfied. Then the (θ, ω)-periodic
solutions of the vector and matrix equation (14) are 1) only constants in the
absence of condition (17), and 2) along with constant solutions, the equation
(14) has solutions of the form (18), if condition (17) is satisfied.

Now we consider the homogeneous linear vector and matrix equation

D∗y(τ, t) = C × y(τ, t). (19)

Obviously, the matrix Y (τ) = exp [Cτ ] satisfies the equation (19):

D∗Y (τ) = CY (τ), Y (0) = E (20)

and is called its matricant.
It is easy to check that, if y0(t) ∈ C(e)

t
(Rmn), then

y0(h(τ0, τ, t)) =
[
y0
j (hj(τ

0, τ, tj)
]
∈ S
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is the zero of the operator D∗:

D∗y0(h(τ0, τ, t)) = 0. (21)

Then, by virtue of (20) and (21)

y(τ0, τ, t) = Y (τ − τ0)× y0(h(τ0, τ, t)) (22)

is a solution of the initial value problem for (19) with the condition (12).

Lemma 4. The problem (19), (12) has a unique solution of the form (22), defined
on the basis of the product with the projector of matricant and the zero of operator
D∗.

Next, we investigate (θ, ω)-periodic solutions of the equation (19) that corre-
spond to the multiperiodic zeros of the operator D∗.

In this regard, according to Lemma 3, we consider the solution (22) of problem

(19), (12) with the initial functions y0(t+ ω) = y0(t) ∈ C(e)

t
(Rmn).

Let us prove the following theorem.

Theorem 1. Solution (22) is (θ, ω)-periodic if and only if the condition

[Y (θ)− E]× y0(t) = 0 (23)

is satisfied.

Proof. Necessity. Let the solution (22) be (θ, ω)-periodic, that is

y(τ0, τ + θ, t+ ω) = y(τ0, τ, t). (24)

Then we have condition (23) from (24) for τ = τ0.
Sufficiency. Suppose condition (23) is satisfied. Let us prove the validity of (24).
Along with solution (22), consider the solution

ỹ(τ0, τ, t) = y(τ0, τ + θ, t+ ω) = Y (τ + θ − τ0)× y0(h(τ0, τ + θ, t+ ω)) =

= Y (τ + θ − τ0)× y0(h(τ0, τ, t)).

Hence, for τ = τ0, by virtue of condition (23), we have

ỹ(τ0, τ, t)|τ=τ0 = Y (θ)× y0(t)) = [(Y (θ)− E) + E]× y0(t) =

= [(Y (θ)− E)]× y0(t) + y0(t) = y0(t).

Consequently, the solutions y(τ0, τ, t) and ỹ(τ0, τ, t) satisfy the same initial con-
dition. Then, by virtue of the uniqueness property of the solution, we have
ỹ(τ0, τ, t) ≡ y(τ0, τ, t) or y(τ0, τ + θ, t+ ω) ≡ y(τ0, τ, t). J
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Corollary 1. Under the conditions of Theorem 1, vector and matrix equation
(19) has only a zero (θ, ω)-periodic solution if and only if the following condition
is satisfied

det [Y (θ)− E] 6= 0. (25)

The proof of the corollary follows from the fact that the condition (25) is
equivalent to the existence of only a trivial solution to equation (23).

Next, consider the non-homogeneous linear vector and matrix equation

D∗y(τ, t) = C × y(τ, t) + ϕ(τ, t) (26)

with constant matrix C and free term

ϕ(τ + θ, t+ ω) = ϕ(τ, t) ∈ C(0,e)

τ,t
(R× Rmn). (27)

It is clear that the solution y(τ0, τ, t) of equation (19) with the initial condition
(12) consists of the sum of the solution (22) of the corresponding homogeneous
equation and the solution of equation (19) with the zero initial condition

ỹ(τ0, τ, t) =

τ∫
τ0

Y (τ − s)× ϕ(s, h(s, τ, t)) ds. (28)

The fact that the vector-function (28) satisfies the equation (26) can be veri-
fied directly.

Consequently,

y(τ0, τ, t) = Y (τ − τ0)× y0(h(τ0, τ, t)) +

τ∫
τ0

Y (τ − s)× ϕ(s, h(s, τ, t)) ds (29)

is a solution to equation (26) with the initial condition (12).

Thus, we have proved the following lemma.

Lemma 5. Problem (26), (12) has a unique solution of the form (29), defined
on the basis of products with a projector of 1) zero of operator D∗ and 2) a free
term defined along a characteristic with a matricant Y (τ − s).

In applied problems, the definition of a multiperiodic solution of non-
homogeneous equation corresponding to a unique trivial solution of homogeneous
equation is of special interest.

Therefore, in the sequel, we assume that the condition (25) is fulfilled.
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According to the constructive method, assuming the existence of a unique
multiperiodic solution y∗(τ0, τ, t) to non-homogeneous equation (26), from the
relation (29) we define the initial data y0

∗(t) corresponding to this solution, for
which y0

∗(h(τ0, τ, t)) is a (θ, ω)-periodic zero of the operator D∗. In this regard,
we have a solution

y∗(τ, t) = Y (τ − τ0)× y0
∗(h(τ0, τ, t)) +

τ∫
τ0

Y (τ − s)× ϕ(s, h(s, τ, t)) ds. (30)

In order to construct this solution, shifting τ to θ in (30), we have

y∗(τ, t) = y∗(τ + θ, t) = Y (τ + θ − τ0)× y0
∗(h(τ0, τ + θ, t))+

+

τ+θ∫
τ0

Y (τ + θ − s)× ϕ(s, h(s, τ + θ, t)) ds =

= Y (τ + θ − τ0)× y0
∗(h(τ0, τ, t)) +

τ+θ∫
τ0

Y (τ + θ − s)× ϕ(s, h(s, τ + θ, t)) ds.

Further, by replacing s with s+ θ, we obtain

y∗(τ, t) = Y (τ + θ− τ0)× y0
∗(h(τ0, τ, t)) +

τ∫
τ0−θ

Y (τ − s)×ϕ(s, h(s, τ, t)) ds. (31)

Multiplying (31) and (30) on the left by matrices Y −1(τ + θ − τ0) and
Y −1(τ − τ0), respectevely, we obtain

Y −1(τ + θ − τ0)× y∗(τ, t) = y0
∗(h(τ0, τ, t))+

+Y −1(τ + θ − τ0)

τ∫
τ0−θ

Y (τ − s)× ϕ(s, h(s, τ, t)) ds, (32)

Y −1(τ − τ0)× y∗(τ, t) = y0
∗(h(τ0, τ, t))+

+Y −1(τ − τ0)

τ∫
τ0

Y (τ − s)× ϕ(s, h(s, τ, t)) ds. (33)

Further, excluding the initial function y0
∗(h(τ0, τ, t)) from the system of equa-

tions (36)-(37), we obtain[
Y −1(τ + θ − τ0)− Y −1(τ − τ0)

]
× y∗(τ, t) =
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=

τ∫
τ0−θ

Y (τ0 − θ − s)× ϕ(s, h(s, τ, t))ds+

τ∫
τ0

Y (τ0 − s)× ϕ(s, h(s, τ, t))ds. (34)

Since, by virtue of condition (25), we have

det
[
Y −1(τ + θ − τ0)− Y −1(τ − τ0)

]
= det

[
Y −1(τ − τ0)(E − Y (θ))Y −1(θ)

]
6= 0,

the required solution (34) can be represented as

y∗(τ, t) =
[
Y −1(τ + θ − τ0)− Y −1(τ − τ0)

]−1

[ τ∫
τ0−θ

Y (τ0 − θ − s)× ϕ(s, h(s, τ, t)) ds+

τ0∫
τ

Y (τ0 − s)× ϕ(s, h(s, τ, t)) ds
]
.

Since[
Y −1(τ + θ − τ0)− Y −1(τ − τ0)

]−1
=
[
Y −1(τ + θ)− Y −1(τ)

]−1 − Y −1(τ0),

Y (τ0 − θ − s) = Y −1(τ0)Y (s+ θ),

we finally have

y∗(τ, t) =
[
Y −1(τ + θ)− Y −1(τ)

]−1
[ τ∫
τ0−θ

Y −1(s+ θ)× ϕ(s, h(s, τ, t)) ds+

+

τ0∫
τ

Y −1(s)× ϕ(s, h(s, τ, t)) ds
]
. (35)

It is clear that y∗(τ, t) is a solution to equation (26), defined by relation (35).
Let us introduce the function s∗(τ) = [τ/θ] θ, where [·] is a sign of integer

part. Obviously, s∗(τ) is differentiable when τ 6= νθ, ν ∈ Z, moreover, ṡ∗(τ) = 0.
Points τ = νθ are removable singular points of the derivative ṡ∗(τ).

If we put ṡ∗(τ)|τ=νθ = 0, then the singularity of the derivative is eliminated
and we have ṡ∗(τ) = 0 with respect to τ ∈ R. Obviously, s∗(τ) has the property
s∗(τ + νθ) = s∗(τ) + νθ.

Now, if we take into account ṡ∗(τ) = 0, then for τ0 = s∗(τ + θ − 0) relation
(35) remains a solution of equation (26) of the form

y∗(τ, t) =
[
Y −1(τ + θ)− Y −1(τ)

]−1
[ τ∫
s∗(τ)

Y −1(s+ θ)× ϕ(s, h(s, τ, t)) ds+
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+

s∗(τ+θ−0)∫
τ

Y −1(s)× ϕ(s, h(s, τ, t)) ds
]
. (36)

Moreover, it is θ-periodic with respect to τ . This can be verified directly.

Further, we introduce the matrix function

G(s, τ)) =

{[
Y −1(τ + θ)− Y −1(τ)

]−1
Y −1(s+ θ), s∗(τ) ≤ s ≤ τ,[

Y −1(τ + θ)− Y −1(τ)
]−1

Y −1(s), τ < s ≤ s∗(τ + θ − 0)
(37)

for a compact representation of the solution (36) in the form

y∗(τ, t) =

s∗(τ+θ−0)∫
s∗(τ)

G(s, τ)× ϕ(s, h(s, τ, t)) ds. (38)

The function (37) can be called a Green’s type function, which has the fol-
lowing easily verifiable properties:

10. D∗G(s, τ) = CG(s, τ), s 6= τ ;

20. G(τ − 0, τ)−G(τ + 0, τ) = G(τ, τ + 0)−G(τ, τ − 0) = E;

30. G(s∗(τ + θ − 0), τ)−G(s∗(τ), τ) = 0; (39)

40. G(s+ θ, τ + θ) = G(s, τ);

50.

s∗(τ+θ−0)∫
s∗(τ)

G(s, τ)× ϕ(s, h(s, τ, t)) ds ≤ γ,

where E is an identity matrix, and γ is a positive constant.

Consequently, by (39), the solution (38) satisfies the estimate

‖y∗‖ ≤ γ ‖ϕ‖ , (40)

where ‖y∗‖ = max
j=1,n

sup
R×Rm

∣∣∣y∗j (τ, tj)∣∣∣.
By virtue of condition (25), equation (26) has a unique (θ, ω)-periodic solu-

tion. Thus, the following theorem is proved.

Theorem 2. Under conditions (25) and (27), equation (26) admits a unique
(θ, ω)-periodic solution of the form (38), for which the estimate (40) is valid.
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Quasilinear vector and matrix equations with differentiation op-
erator in the direction of characteristics. Now we proceed to study the
quasilinear vector and matrix equation

D∗y = Cy + ϕ(τ, t, y), (41)

with the initial condition

y(τ, t)|τ=τ0 = y0(t+ ω) = y0(t) ∈ C(e)

t
(Rmn),

∣∣y0
∣∣ ≤ ∆0, (42)

where the vector-function ϕ(τ, t, y) =
[
ϕi(τ, ti, y)

]
∈ S has the property

ϕ(τ + θ, t+ ω, y) = ϕ(τ, t, y) ∈ C(0,e,ê)

τ,t,y
(R× Rmn × Rn∆∗) (43)

and Rn∆∗ = {y ∈ Rn : |y| ≤ ∆∗}, |·| is one of the three known types of vector
norms.

Let us state the consequences of condition (43) with respect to (τ, t) ∈ (R ×
Rmn): ∣∣ϕ(τ, t, ỹ)− ϕ(τ, t, y)

∣∣ ≤ ` |ỹ − y| , ỹ, y ∈ Rn∆∗ , (44)∣∣ϕ(τ, t, 0)
∣∣ ≤ κ, ∣∣ϕ(τ, t, y)

∣∣ ≤ ∣∣ϕ(τ, t, 0) + ` |y|
∣∣ ≤ κ+ ` |y| , y ∈ Rn∆∗ . (45)

Under the condition (43), based on Lemma 5, the problem (41)-(42) is pre-
sented in the form of an equivalent integral equation

y(τ, t) = Y (τ − τ0)× y0(h(τ0, τ, t)) +

τ∫
τ0

Y (τ − s)× (ϕ⊗ y)(s, h(s, τ, t)) ds. (46)

The solution y∗(τ, t) of equation (46) is determined under the condition

δ|C| < 1, δ(2∆0 + α(κ+ `∆∗)) < ∆∗,

by the method of successive approximations in the space Sωδ,∆∗(Rδ × Rmn) of

n-vector-functions y(τ, t) continuous in (τ, t) ∈ Rδ × Rmn, ω-periodic in t ∈ Rmn
and bounded in the norm

∣∣ y − y0
∣∣ ≤ ∆∗ in τ ∈ Rδ =

{
τ ∈ R : |τ − τ0| ≤ δ

}
,

δ = const > 0, τ0 ∈ R.
It is clear that t behaves like an mn-dimensional parameter. Moreover, the

right-hand side of equation (46) has continuous partial derivatives both with re-
spect to the required vector-function and with respect to the parameter t. Here
the theorem on the existence of continuous derivatives of the solution of the
integral equation with respect to the parameter is applicable. Therefore, for suf-
ficiently small values of δ > 0, the limit point y∗(τ, t) of successive approximations
is continuously differentiable with respect to the coordinates t.
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The solution y∗(τ, t) is also continuously differentiable with respect to τ , since
it is a transition variable from the initial value problem for the differential equa-
tion to the equivalent integral equation for sufficiently small values of δ > 0.

Thus, the smoothness of the solution of integral equation is ensured for a
sufficiently small value of δ = δ∗, and the following theorem on the solvability of
the initial value problem is proved.

Theorem 3. Under condition (43), initial value problem (41)-(42) is uniquely
solvable in the space Sωδ∗,∆∗(Rδ∗ × Rmn).

Since Theorem 3 is valid for all τ0 ∈ R, our problem has a unique solution for
all τ ∈ R.

Corollary 2. Under the conditions of Theorem 3, problem (41)-(42) is solvable
for all (τ, t) ∈ R× Rmn. Moreover, y∗(τ, t) ∈ Sω∆∗(R× Rmn).

Theorem 3 allows us to extend Theorem 2 to the quasilinear case.

In this regard, we still assume that the condition of Corollary 1 is satisfied and,
in accordance with the integral representation (38), we introduce the operator

Q∗y∗(τ, t) =

s∗(τ+θ−0)∫
s∗(τ)

G(s, τ)× ϕ(s, h(s, τ, t)) ds (47)

in the space Sθ,ω∆∗ (R×Rmn) of n-vector-functions y∗(τ, t) that are continuous and
(θ, ω)-periodic with respect to (τ, t) and bounded in the norm |y| ≤ ∆∗.

Obviously, if y∗(τ, t) ∈ Sθ,ω∆∗ (R× Rmn), then, by virtue of properties (39) and
inequalities (45), estimating (47), we have

∣∣Q∗y∗(τ, t)
∣∣ =

∣∣∣ s
∗(τ+θ−0)∫
s∗(τ)

G(s, τ)× ϕ(s, h(s, τ, t)) ds
∣∣∣ ≤ γ(κ+ `∆∗). (48)

Therefore, for

γ(κ+ `∆∗) < ∆∗, (49)

from the estimate (48) we obtain ‖Q∗y‖ ≤ ∆∗. Then, according to Theorem 2,

we have Q∗y(τ, t) ∈ Sθ,ω∆∗ (R× Rmn) for y(τ, t) ∈ Sθ,ω∆∗ (R× Rmn).

Thus, we have proved that the operator Q∗ maps the space Sθ,ω∆∗ (R × Rmn)
into itself.
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By virtue of properties (39) and condition (44) for ỹ = ỹ(τ, t) and y = y(τ, t)

from the space Sθ,ω∆∗ (R× Rmn), we have∣∣Q∗ỹ(τ, t)−Q∗y(τ, t)
∣∣ ≤ q∗ |ỹ − y| , (50)

where q∗ = γ`.
Then from condition (49) we have q∗ < 1. Hence, by virtue of (50), Q∗ is a

contraction operator in Sθ,ω∆∗ (R× Rmn) and has a unique fixed point

y∗(τ, t) = Q∗y∗(τ, t).

The existence of a unique solution of the equation (47) in the space Sθ,ω∆∗ (R×
Rmn) follows from the last identity. Moreover, by virtue of Theorem 3, the
solution has a smoothness property with respect to (τ, t).

Thus, the following theorem on the existence of a (θ, ω)-periodic solution of
the equation under consideration is proved.

Theorem 4. Under conditions (25), (43), and (49), quasilinear equation (41)

has a unique solution y∗(τ, t) in the space Sθ,ω∆∗ (R× Rmn).

In conclusion, we note that the method has been developed for studying
the initial value problem (11)-(12) and the problem (11), (13) for quasilinear
vector and matrix equations with differentiation operators D∗ = (D∗

1, ..., D
∗
n)

with different components D∗
j , based on the introduction of the operator Π and

the projector P . Upon completion of the integration of systems with canonical
differentiation operators D∗ , the reverse transition to the previous variables is
carried out, based on the operator Π−1t = t. Otherwise we have ti1 = ti2 =
... = tin = ti. Thus, we get the results expressed by the previous variables
(t1, ..., tn) = t. The final results are formulated after the replacement y = K−1x
in terms of variables (τ, t) for the problem with operator D.

According to this method, the existence of solutions of the problems is proved
and the integral representations of these solutions in the linear case, which allowed
to extend the idea of method to the quasilinear case, are obtained.
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