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Elliptic Systems in Generalized Morrey Spaces
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Abstract. We obtain local regularity in generalized Morrey spaces for the strong solu-
tions to 2b-order linear elliptic systems with discontinuous coefficients.
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1. Introduction

We obtain local regularity result for the following uniformly elliptic systems
with bounded and discontinuous coefficients

L(x,D)u :=
∑
|α|=2b

Aα(x)Dαu(x) = f(x).

In our previous papers [11, 13, 14] a Calderón–Zygmund type theory has
been developed for linear and quasi-linear elliptic and parabolic systems in the
framework of the classical Morrey spaces Lp,λ, assuming the principal coefficients
of the operator to be essentially bounded functions of vanishing mean oscillation
(VMO). On the other hand, in the recent years an exhaustive Calderón–Zygmund
theory has been elaborated both for elliptic and parabolic equations/systems in
divergence form with VMO-coefficients in the framework of the generalized Mor-
rey spaces Lp,ω (cf. [5, 6] and the survey [4]). This last generalization of the
spaces allows finer control on the local oscillation properties of a function near its
singular points and that is why regularity results in Lp,ω of solutions to PDEs with
discontinuous coefficients are of great importance in the applications to differen-
tial geometry, stochastic control, nonlinear optimization, adaptive discontinuous
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Galerkin FEMs, etc. As it concerns regularity results in other function spaces, we
can mention also the recent results [1, 2] that consider linear higher order elliptic
equations in Grand Lebesgue spaces.

In the present work we are going to extend the results obtained in [13, 15, 18]
to uniformly elliptic systems with discontinuous coefficients in the framework of
generalized Morrey spaces.

In what follows we use the standard notation:

� x = (x1, . . . , xn) ∈ Rn, r > 0 and Br(x) = {y ∈ Rn : |x− y| < r}.

� Ω ⊂ Rn, n ≥ 3, is a bounded domain, |Ω| is the Lebesgue measure of Ω,
Ωr(x) = Ω ∩ Br(x).

� Sn−1 = {ξ ∈ Rn : |ξ| = 1} is the unit sphere in Rn;

� Mm×m is the set of m×m-matrices.

� For u = (u1, . . . , um) : Ω→ Rm we write |u|2 =
∑

j≤m |uj |2.

� For any function f and any domain D with f : D → R we write

fD = −
∫
D
f(y)dy =

1

|D|

∫
D
f(y) dy,

‖f‖pp,D = ‖f‖pLp(D) =

∫
D
|f(y)|p dy.

� For u ∈ Lp(Ω;Rm) we write ‖u‖p,Ω instead of ‖u‖Lp(Ω;Rm).

Throughout this paper, the standard summation convention on repeated up-
per and lower indexes is adopted. The letter C is used for various constants and
may change from one occurrence to another.

2. Definitions and preliminary results

We are interested in operators with discontinuous coefficients ajkα belonging
to the Sarason function class VMO.

Definition 1. For a ∈ L1
loc(Rn) and any R > 0 set

γa(R) := sup
Br,r≤R

1

|Br|

∫
Br
|a(y)− aBr | dy,

where Br is any ball in Rn. We say that
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� a ∈ BMO if
‖a‖∗ = sup

R>0
γa(R) <∞;

� a ∈ VMO with VMO-modulus γa if a ∈ BMO and

lim
R→0

γa(R) = 0.

For a matrix-valued function A ∈Mm×m with entries ajk ∈ VMO we define
the VMO-modulus of A as γA =

∑m
j,k=1 γajk .

We call weight a measurable function ω : Rn × R+ → R+ and for any ball
Br(x) we write ω(x, r) instead of ω(Br(x)). In addition we assume that there exist
positive constants κ1, κ2 and κ3 such that

κ1 <
ω(x0, s)

ω(x0, r)
< κ2 ∀ 0 < r ≤ s ≤ 2r, x0 ∈ Rn;

∫ ∞
r

ω(x0, s)

sn+1
ds ≤ κ3

ω(x0, r)

rn
.

(1)

Definition 2 ([12]). A function f ∈ Lp(Ω) with 1 ≤ p < ∞ belongs to the
generalized Morrey space Lp,ω(Ω) if the following norm is finite:

‖f‖p,ω;Ω =

(
sup
Br(x)

1

ω(x, r)

∫
Ωr(x)

|f(y)|p dy

)1/p

,

where the supremo is taken over all balls centered at x ∈ Ω and of radius r ∈
(0,diam Ω].

The generalized Sobolev–Morrey space W 2b
p,ω(Ω) consists of all functions u ∈

Lp(Ω) with generalized derivatives Dαu, |α| ≤ 2b, belonging to Lp,ω(Ω) and en-
dowed with the norm

‖u‖W 2b
p,ω(Ω) =

2b∑
s=0

∑
|α|=s

‖Dαu‖p,ω;Ω.

Analogously, u =
(
u1, . . . , um

)
∈W 2b

p,ω(Ω;Rm) means uk ∈W 2b
p,ω(Ω) and the norm

‖u‖W 2b
p,ω(Ω;Rm) is given by

∑m
k=1 ‖uk‖W 2b

p,ω(Ω).

Remark 1. It is clear that if ω(x, r) = rλ with λ ∈ (0, n), then Lp,ω gives rise to
the classical Morrey space Lp,λ, while Lp,1 ≡ Lp and W 2b

p,1 reduces to the classical

parabolic Sobolev space W 2b
p (cf. [14]) when ω ≡ 1.

In what follows, we will use also a localized versionW 2b
p,ω,loc(Ω;Rm) ofW 2b

p,ω(Ω;Rm),

consisting of all functions u that belong to u ∈W 2b
p,ω(Ω′;Rm) for each Ω′ b Ω.
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Definition 3. Let K(x; ξ) : Rn×(Rn\{0})→ R be a variable Calderón–Zygmund
kernel, i.e.

1. for each fixed x ∈ Rn, K(x; ·) is a Calderón–Zygmund kernel:

(a) K(x; ·) ∈ C∞(Rn \ {0})
(b) K(x;µξ) = µ−nK(x, ξ) ∀µ > 0

(c)

∫
Sn−1

K(x; ξ) dσξ = 0

∫
Sn−1

|K(x; ξ)| dσξ <∞;

2. for every multi-index β : supξ∈Sn−1 |Dβ
ξK(x; ξ)| ≤ C(β) independently of x,

where Sn−1 is the unit sphere in Rn.

Given a function f ∈ L1(Ω), define the singular integral operator

Kf(x) := P.V.

∫
Rn
K(x;x− y)f(y) dy

and its commutator with multiplication by a function a ∈ L∞(Rn) as

C[a, f ](x) :=P.V.

∫
Rn
K(x;x− y)[a(y)− a(x)]f(y) dy

= K(af)(x)− a(x)Kf(x).

The Lp and Lp,ω-boundedness of the operators K and C have been obtained in
[3, 10] and [16, 17], respectively. For the sake of completeness, we summarize
these results here.

Proposition 1. Let ω be a weight satisfying (1) and f ∈ Lp,ω(Ω) with p ∈ (1,∞).
Then there exists a positive constant C = C(p, ω,K) such that

‖Kf‖p,ω;Ω ≤ C‖f‖p,ω;Ω, ‖C[a, f ]‖p,ω;Ω ≤ C‖a‖∗‖f‖p,ω;Ω.

In addition, if a ∈ VMO, then for each ε > 0 there exists r0 = r0(ε, γa) > 0
such that for any r ∈ (0, r0) and any ball Br the following inequality holds:

‖C[a, f ]‖p,ω;Br ≤ Cε‖f‖p,ω;Ω.

3. Statement of the problem

Hereafter u : Ω → Rm, m ≥ 1, stands for the unknown function, f =
(f1, . . . , fm) : Ω → Rm is a given vector-valued function and the coefficient ma-

trix Aα(x) ∈ Mm×m has entries {ajkα }mj,k=1, a
jk
α : Ω → R, which are measurable

functions. Fixed an integer b ≥ 1, we deal with the 2b-order linear system

L(x,D)u :=
∑
|α|=2b

Aα(x)Dαu(x) = f(x) a.e. in Ω, (2)
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that is equivalent to the system of differential equations

m∑
k=1

∑
|α|=2b

ajkα D
αuk =

m∑
k=1

ljk(x,D)uk = f j(x), j = 1, . . . ,m. (3)

The entries ljk(x,D) of the matrix differential operator L(x,D) are homogeneous
polynomials of degree 2b, that is,

ljk(x, ξ) :=
∑
|α|=2b

ajkα (x)ξα, ξ ∈ Rn, ξα = ξα1
1 ξα2

2 . . . ξαnn . (4)

The operator L(x,D) is supposed to be uniformly elliptic that means the
characteristic determinant of L(x, ξ) is non-vanishing for a.a. x ∈ Ω and all
ξ 6= 0. Due to the homogeneity of ljk this condition can be written as

∃ δ > 0: det

 ∑
|α|=2b

Aα(x)ξα

 ≥ δ|ξ|2bm (5)

for almost all x ∈ Ω and all ξ ∈ Rn.
Fix the coefficients of (2) at x0 ∈ Ω and consider the constant coefficients

operator

L(x0, D) :=
∑
|α|=2b

Aα(x0)Dα.

Then the 2bm-order differential operator

L(x0, D) := detL(x0, D) = det

 ∑
|α|=2b

ajkα (x0)Dα


m

j,k=1

(6)

is elliptic as it follows from (5), and let Γ̃(x0;x− y) be its fundamental solution.
If the space dimension n is odd, then

Γ̃(x0;x− y) = |x− y|2bm−nP
(
x0;

x− y
|x− y|

)
(7)

with P (x0; ξ) being a real analytic function of ξ ∈ Sn−1. If n is even, it is
enough to introduce a fictitious new variable xn+1 and extend all functions as
constants with respect to it (see [9]). Let

{
Ljk(x0, ξ)

}m
j,k=1

be the cofactor ma-

trix of
{
ljk(x0, ξ)

}m
j,k=1

. Then Ljk(x0, D) are differential operators of order up to

2b(m− 1) or identically zero. Since

m∑
k=1

lik(x0, ξ)Ljk(x0, ξ) = δijL(x0, ξ) (8)
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with the Kronecker symbol δij , the fundamental matrix of L(x0, D) is given by

Γ(x0;x) = {Γjk(x0;x)}mj,k=1 = {Lkj(x0, D)Γ̃(x0;x)}mj,k=1.

Let Br b Ω be such that x0 ∈ Br, v ∈ C∞0 (Br) and let us write

L(x0, D)v(x) = (L(x0, D)− L(x,D))v(x) + L(x,D)v(x) .

Using the standard approach [7, 8, 9] we obtain an explicit representation formula
for v via Newtonian potentials

v(x) =

∫
Br

Γ(x0;x− y)Lv(y) dy

+

∫
Br

Γ(x0;x− y)
(
L(x0, D)− L(y,D)

)
v(y) dy.

(9)

Taking the α-derivatives with |α| = 2b and then unfreezing the coefficients putting
x0 = x we get

Dαv(x) = p.v.

∫
Br
DαΓ(x;x− y)Lv(y) dy

+
∑
|α′|=2b

p.v.

∫
Br
DαΓ(x;x− y)(Aα′(x)−Aα′(y))Dα′v(y) dy

+

∫
Sn−1

DβsΓ(x; y)νs dσy Lv(x)

=: Kα(Lv)(x) +
∑
|α′|=2b

Cα[Aα′ , D
α′v](x) + Lv(x)Qβ(x),

(10)

where the derivatives DαΓ(·; ·) and DβsΓ(·; ·) are taken with respect to the second
variable, the multi-indices βs are such that

βs = (α1, . . . , αs−1, αs − 1, αs+1, . . . , αn), |βs| = 2b− 1,

and ν = (ν1, . . . , νn) is the outer normal to Sn−1. Let us note that Kα are
Calderón–Zygmund type singular integral operators, Cα are commutators of Kα
with VMO functions, and Qβ are bounded integrals (cf. [7, 8, 13]).

4. Main result

Our main result is given in the following theorem.
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Theorem 1. Suppose (5), Aα = {ajkα } ∈ VMO(Ω) ∩ L∞(Ω) and let u ∈
W 2b
p,loc(Ω;Rm) be a strong solution to (2) with p ∈ (1,∞). Let f ∈ Lp,ω(Ω;Rm)

with ω satisfying (1). Then u ∈W 2b
p,ω,loc(Ω;Rm) and

‖u‖W 2b
p,ω(Ω′;Rm) ≤ C

(
‖f‖p,ω;Ω + ‖u‖p,ω;Ω′′

)
(11)

for all Ω′ b Ω′′ b Ω, where the constant C depends on n, p,m, b, ω, ‖Aα‖∞;Ω, the
VMO-moduli γAα of the coefficients and on dist (Ω′, ∂Ω′′).

The proof of Theorem 1 relies on some real analysis results regarding bound-
edness of Calderón–Zygmund type singular integral operators and their commu-
tators, obtained in [13, 16, 17].

Proof. Fix an arbitrary x0 ∈ supp u and let Br ≡ Br(x0) b Ω. Con-

sider v ∈ W 2b,p
0 (Br(x0)) (the closure of C∞0 (Br(x0)) with respect to the norm

in W 2b,p(Br(x0))) with supp v ⊂ Br(x0). Then (10), Proposition 1 and Aα ∈
VMO(Ω) imply that for each ε > 0 there exists r0 = r0(ε, γAα) such that

‖D2bv‖p,ω;Br ≤ C
(
‖Lv‖p,ω;Br + ε‖D2bv‖p,ω;Br

)
whenever r < r0. Choosing ε small enough we obtain

‖D2bv‖p,ω;Br ≤ C‖Lv‖p,ω;Br . (12)

Let θ ∈ (0, 1), θ′ = θ(3 − θ)/2 > 0 and define the cut-off function ϕ(x) ∈
C∞0 (Br) such that

ϕ(x) =

{
1 x ∈ Bθr(x0)

0 x /∈ Bθ′r(x0).

Since θ′ − θ = θ(1− θ)/2, direct calculations give

|Dsϕ| ≤ C(s)[θ(1− θ)r]−s, ∀ s = 1, 2, . . . , 2b.

Setting v = ϕu in (12) we obtain

‖D2bu‖p,ω;Bθr ≤ ‖D
2bv‖p,ω;Bθ′r ≤ C‖Lv‖p,ω;Bθ′r

≤ C

(
‖f‖p,ω;Bθ′r +

2b−1∑
s=1

‖D2b−su‖p,ω;Bθ′r
[θ(1− θ)r]s

+
‖u‖p,ω;Bθ′r

[θ(1− θ)r]2b

)
.

Because of the choice of θ′ we have θ(1− θ) ≤ 2θ′(1− θ′) that implies

[θ(1− θ)r]2b‖D2bu‖p,ω;Bθr ≤ C
(

[θ′(1− θ′)r]2b‖f‖p,ω;Bθ′r

+
2b−1∑
s=1

[θ′(1− θ′)r]s‖Dsu‖p,ω;Bθ′r + ‖u‖p,ω;Bθ′r

)
.

(13)
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Setting Θs = sup0<θ<1[θ(1− θ)r]s‖Dsu‖p,ω;Bθr we can rewrite (13) as

Θ2b ≤ C

(
r2b‖f‖p,ω;Br +

2b−1∑
s=1

Θs + Θ0

)
. (14)

In order to estimate the seminorms Θs we need the following interpolation
inequality which follows from [13, 19].

Lemma 1. There is a constant C, independent of r, such that

Θs ≤ εΘ2b +
C

εs/(2b−s)
Θ0 for each ε ∈ (0, 2). (15)

Proof. Let θ0 ∈ (0, 1) be such that

Θs ≤ 2[θ0(1− θ0)r]s‖Du‖sp,ω;Bθ0r
.

By interpolation and scaling arguments we obtain

‖Dsu‖p,ω;Bθ0r ≤ δ
2b−s‖D2bu‖p,ω;Bθ0r +

C ′

δs
‖u‖p,ω;Bθ0r

and hence

Θs ≤ 2[θ0(1− θ0)r]sδ2b−s‖D2bu‖p,ω;Bθ0r +
2C ′[θ0(1− θ0)r]s

δs
‖u‖p,ω;Bθ0r .

J
Turning back to (14), choosing suitable ε ∈ (0, 2), and applying (15) we get

Θ2b ≤ C
(
r2b‖f‖p,ω;Br + Θ0

)
.

Fixing θ = 1/2 at the seminorm Θs we obtain the following Caccioppoli-type
estimate:

‖D2bu‖p,ω;Br/2 ≤ C
(
‖f‖p,ω;Ω + Cr−2b‖u‖p,ω;Br

)
. (16)

The desired estimate (11) follows now by means of standard covering arguments
with balls Br/2 for r < dist (Ω′, ∂Ω′′) and partition of unity over Ω′ subordinated
to this covering.

J
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