Azerbaijan Journal of Mathematics V. 11, No 2, 2021, July ISSN 2218-6816

Elliptic Systems in Generalized Morrey Spaces

D.K. Palagachev, L.G. Softova*

Abstract. We obtain local regularity in generalized Morrey spaces for the strong solutions to 2*b*-order linear elliptic systems with discontinuous coefficients.

Key Words and Phrases: generalized Morrey spaces, elliptic systems, VMO, a priori estimates.

2010 Mathematics Subject Classifications: 35K41; 35B65, 35B45, 35R05, 46E30

1. Introduction

We obtain local regularity result for the following uniformly elliptic systems with bounded and discontinuous coefficients

$$\mathfrak{L}(x,D)\mathbf{u} := \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x)D^{\alpha}\mathbf{u}(x) = \mathbf{f}(x)$$

In our previous papers [11, 13, 14] a Calderón-Zygmund type theory has been developed for linear and quasi-linear elliptic and parabolic systems in the framework of the classical Morrey spaces $L^{p,\lambda}$, assuming the principal coefficients of the operator to be essentially bounded functions of vanishing mean oscillation (VMO). On the other hand, in the recent years an exhaustive Calderón-Zygmund theory has been elaborated both for elliptic and parabolic equations/systems in divergence form with VMO-coefficients in the framework of the generalized Morrey spaces $L^{p,\omega}$ (cf. [5, 6] and the survey [4]). This last generalization of the spaces allows finer control on the local oscillation properties of a function near its singular points and that is why regularity results in $L^{p,\omega}$ of solutions to PDEs with discontinuous coefficients are of great importance in the applications to differential geometry, stochastic control, nonlinear optimization, adaptive discontinuous

http://www.azjm.org

153

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

Galerkin FEMs, etc. As it concerns regularity results in other function spaces, we can mention also the recent results [1, 2] that consider linear higher order elliptic equations in Grand Lebesgue spaces.

In the present work we are going to extend the results obtained in [13, 15, 18] to uniformly elliptic systems with discontinuous coefficients in the framework of generalized Morrey spaces.

In what follows we use the standard notation:

- $x = (x_1, \dots, x_n) \in \mathbb{R}^n, r > 0$ and $\mathcal{B}_r(x) = \{y \in \mathbb{R}^n : |x y| < r\}.$
- $\Omega \subset \mathbb{R}^n, n \geq 3$, is a bounded domain, $|\Omega|$ is the Lebesgue measure of Ω , $\Omega_r(x) = \Omega \cap \mathcal{B}_r(x)$.
- $\mathbb{S}^{n-1} = \{\xi \in \mathbb{R}^n : |\xi| = 1\}$ is the unit sphere in \mathbb{R}^n ;
- $\mathcal{M}^{m \times m}$ is the set of $m \times m$ -matrices.
- For $\mathbf{u} = (u^1, \dots, u^m) : \Omega \to \mathbb{R}^m$ we write $|\mathbf{u}|^2 = \sum_{j \le m} |u^j|^2$.
- For any function f and any domain D with $f: D \to \mathbb{R}$ we write

$$f_D = \int_D f(y) dy = \frac{1}{|D|} \int_D f(y) dy,$$
$$\|f\|_{p,D}^p = \|f\|_{L^p(D)}^p = \int_D |f(y)|^p dy.$$

• For $\mathbf{u} \in L^p(\Omega; \mathbb{R}^m)$ we write $\|\mathbf{u}\|_{p,\Omega}$ instead of $\|\mathbf{u}\|_{L^p(\Omega; \mathbb{R}^m)}$.

Throughout this paper, the standard summation convention on repeated upper and lower indexes is adopted. The letter C is used for various constants and may change from one occurrence to another.

2. Definitions and preliminary results

We are interested in operators with discontinuous coefficients a_{α}^{jk} belonging to the Sarason function class VMO.

Definition 1. For $a \in L^1_{loc}(\mathbb{R}^n)$ and any R > 0 set

$$\gamma_a(R) := \sup_{\mathcal{B}_r, r \le R} \frac{1}{|\mathcal{B}_r|} \int_{\mathcal{B}_r} |a(y) - a_{\mathcal{B}_r}| \, dy,$$

where \mathcal{B}_r is any ball in \mathbb{R}^n . We say that

• $a \in BMO$ if

$$||a||_* = \sup_{R>0} \gamma_a(R) < \infty;$$

• $a \in VMO$ with VMO-modulus γ_a if $a \in BMO$ and

$$\lim_{R \to 0} \gamma_a(R) = 0$$

For a matrix-valued function $\mathcal{A} \in \mathcal{M}^{m \times m}$ with entries $a^{jk} \in VMO$ we define the VMO-modulus of \mathcal{A} as $\gamma_{\mathcal{A}} = \sum_{j,k=1}^{m} \gamma_{a^{jk}}$.

We call weight a measurable function $\omega: \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}_+$ and for any ball $\mathcal{B}_r(x)$ we write $\omega(x, r)$ instead of $\omega(\mathcal{B}_r(x))$. In addition we assume that there exist positive constants κ_1, κ_2 and κ_3 such that

$$\kappa_1 < \frac{\omega(x_0, s)}{\omega(x_0, r)} < \kappa_2 \quad \forall \ 0 < r \le s \le 2r, \quad x_0 \in \mathbb{R}^n;$$

$$\int_r^\infty \frac{\omega(x_0, s)}{s^{n+1}} \, ds \le \kappa_3 \frac{\omega(x_0, r)}{r^n}.$$
(1)

Definition 2 ([12]). A function $f \in L^p(\Omega)$ with $1 \leq p < \infty$ belongs to the generalized Morrey space $L^{p,\omega}(\Omega)$ if the following norm is finite:

$$||f||_{p,\omega;\Omega} = \left(\sup_{\mathcal{B}_r(x)} \frac{1}{\omega(x,r)} \int_{\Omega_r(x)} |f(y)|^p \, dy\right)^{1/p}$$

where the supremo is taken over all balls centered at $x \in \Omega$ and of radius $r \in (0, \operatorname{diam} \Omega]$.

The generalized Sobolev-Morrey space $W^{2b}_{p,\omega}(\Omega)$ consists of all functions $u \in L^p(\Omega)$ with generalized derivatives $D^{\alpha}u$, $|\alpha| \leq 2b$, belonging to $L^{p,\omega}(\Omega)$ and endowed with the norm

$$||u||_{W^{2b}_{p,\omega}(\Omega)} = \sum_{s=0}^{2b} \sum_{|\alpha|=s} ||D^{\alpha}u||_{p,\omega;\Omega}.$$

Analogously, $\mathbf{u} = (u_1, \ldots, u_m) \in W^{2b}_{p,\omega}(\Omega; \mathbb{R}^m)$ means $u_k \in W^{2b}_{p,\omega}(\Omega)$ and the norm $\|\mathbf{u}\|_{W^{2b}_{p,\omega}(\Omega; \mathbb{R}^m)}$ is given by $\sum_{k=1}^m \|u_k\|_{W^{2b}_{p,\omega}(\Omega)}$.

Remark 1. It is clear that if $\omega(x, r) = r^{\lambda}$ with $\lambda \in (0, n)$, then $L^{p,\omega}$ gives rise to the classical Morrey space $L^{p,\lambda}$, while $L^{p,1} \equiv L^p$ and $W^{2b}_{p,1}$ reduces to the classical parabolic Sobolev space W^{2b}_p (cf. [14]) when $\omega \equiv 1$.

In what follows, we will use also a localized version $W^{2b}_{p,\omega,\text{loc}}(\Omega;\mathbb{R}^m)$ of $W^{2b}_{p,\omega}(\Omega;\mathbb{R}^m)$, consisting of all functions **u** that belong to $\mathbf{u} \in W^{2b}_{p,\omega}(\Omega';\mathbb{R}^m)$ for each $\Omega' \subseteq \Omega$. **Definition 3.** Let $\mathcal{K}(x;\xi)$: $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}) \to \mathbb{R}$ be a variable Calderón–Zygmund kernel, *i.e.*

- 1. for each fixed $x \in \mathbb{R}^n$, $\mathcal{K}(x; \cdot)$ is a Calderón–Zygmund kernel:
 - (a) $\mathcal{K}(x;\cdot) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ (b) $\mathcal{K}(x;\mu\xi) = \mu^{-n}\mathcal{K}(x,\xi) \quad \forall \mu > 0$ (c) $\int_{\mathbb{S}^{n-1}} \mathcal{K}(x;\xi) \, d\sigma_{\xi} = 0 \qquad \int_{\mathbb{S}^{n-1}} |\mathcal{K}(x;\xi)| \, d\sigma_{\xi} < \infty;$
- 2. for every multi-index β : $\sup_{\xi \in \mathbb{S}^{n-1}} |D_{\xi}^{\beta} \mathcal{K}(x;\xi)| \leq C(\beta)$ independently of x, where \mathbb{S}^{n-1} is the unit sphere in \mathbb{R}^n .

Given a function $f \in L^1(\Omega)$, define the singular integral operator

$$\Re f(x) := P.V. \int_{\mathbb{R}^n} \mathcal{K}(x; x - y) f(y) \, dy$$

and its commutator with multiplication by a function $a \in L^{\infty}(\mathbb{R}^n)$ as

$$\mathfrak{C}[a,f](x) := P.V. \int_{\mathbb{R}^n} \mathcal{K}(x;x-y)[a(y)-a(x)]f(y) \, dy$$
$$= \mathfrak{K}(af)(x) - a(x)\mathfrak{K}f(x).$$

The L^p and $L^{p,\omega}$ -boundedness of the operators \mathfrak{K} and \mathfrak{C} have been obtained in [3, 10] and [16, 17], respectively. For the sake of completeness, we summarize these results here.

Proposition 1. Let ω be a weight satisfying (1) and $f \in L^{p,\omega}(\Omega)$ with $p \in (1,\infty)$. Then there exists a positive constant $C = C(p,\omega,\mathcal{K})$ such that

$$\|\mathfrak{K}f\|_{p,\omega;\Omega} \le C \|f\|_{p,\omega;\Omega}, \qquad \|\mathfrak{C}[a,f]\|_{p,\omega;\Omega} \le C \|a\|_* \|f\|_{p,\omega;\Omega}.$$

In addition, if $a \in VMO$, then for each $\varepsilon > 0$ there exists $r_0 = r_0(\varepsilon, \gamma_a) > 0$ such that for any $r \in (0, r_0)$ and any ball \mathcal{B}_r the following inequality holds:

$$\|\mathfrak{C}[a,f]\|_{p,\omega;\mathcal{B}_r} \le C\varepsilon \|f\|_{p,\omega;\Omega}.$$

3. Statement of the problem

Hereafter $\mathbf{u}: \Omega \to \mathbb{R}^m, m \geq 1$, stands for the unknown function, $\mathbf{f} = (f_1, \ldots, f_m): \Omega \to \mathbb{R}^m$ is a given vector-valued function and the coefficient matrix $\mathbf{A}_{\alpha}(x) \in \mathcal{M}^{m \times m}$ has entries $\{a_{\alpha}^{jk}\}_{j,k=1}^m, a_{\alpha}^{jk}: \Omega \to \mathbb{R}$, which are measurable functions. Fixed an integer $b \geq 1$, we deal with the 2*b*-order linear system

$$\mathfrak{L}(x,D)\mathbf{u} := \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x) D^{\alpha} \mathbf{u}(x) = \mathbf{f}(x) \quad \text{a.e. in } \Omega,$$
(2)

that is equivalent to the system of differential equations

$$\sum_{k=1}^{m} \sum_{|\alpha|=2b} a_{\alpha}^{jk} D^{\alpha} u^k = \sum_{k=1}^{m} l^{jk} (x, D) u^k = f^j(x), \quad j = 1, \dots, m.$$
(3)

The entries $l^{jk}(x, D)$ of the matrix differential operator $\mathfrak{L}(x, D)$ are homogeneous polynomials of degree 2b, that is,

$$l^{jk}(x,\xi) := \sum_{|\alpha|=2b} a_{\alpha}^{jk}(x)\xi^{\alpha}, \quad \xi \in \mathbb{R}^n, \quad \xi^{\alpha} = \xi_1^{\alpha_1}\xi_2^{\alpha_2}\dots\xi_n^{\alpha_n}.$$
(4)

The operator $\mathfrak{L}(x, D)$ is supposed to be *uniformly elliptic* that means the characteristic determinant of $\mathfrak{L}(x, \xi)$ is non-vanishing for a.a. $x \in \Omega$ and all $\xi \neq 0$. Due to the homogeneity of l^{jk} this condition can be written as

$$\exists \delta > 0: \quad \det\left\{\sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x)\xi^{\alpha}\right\} \ge \delta|\xi|^{2bm}$$
(5)

for almost all $x \in \Omega$ and all $\xi \in \mathbb{R}^n$.

Fix the coefficients of (2) at $x_0 \in \Omega$ and consider the constant coefficients operator

$$\mathfrak{L}(x_0, D) := \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x_0) D^{\alpha}.$$

Then the 2bm-order differential operator

$$L(x_0, D) := \det \mathfrak{L}(x_0, D) = \det \left\{ \sum_{|\alpha|=2b} a_{\alpha}^{jk}(x_0) D^{\alpha} \right\}_{j,k=1}^m$$
(6)

is elliptic as it follows from (5), and let $\widetilde{\Gamma}(x_0; x - y)$ be its fundamental solution. If the space dimension n is odd, then

$$\widetilde{\Gamma}(x_0; x - y) = |x - y|^{2bm - n} P\left(x_0; \frac{x - y}{|x - y|}\right)$$
(7)

with $P(x_0;\xi)$ being a real analytic function of $\xi \in \mathbb{S}^{n-1}$. If *n* is even, it is enough to introduce a fictitious new variable x_{n+1} and extend all functions as constants with respect to it (see [9]). Let $\{L_{jk}(x_0,\xi)\}_{j,k=1}^m$ be the cofactor matrix of $\{l^{jk}(x_0,\xi)\}_{j,k=1}^m$. Then $L_{jk}(x_0,D)$ are differential operators of order up to 2b(m-1) or identically zero. Since

$$\sum_{k=1}^{m} l^{ik}(x_0,\xi) L_{jk}(x_0,\xi) = \delta_{ij} L(x_0,\xi)$$
(8)

with the Kronecker symbol δ_{ij} , the fundamental matrix of $\mathfrak{L}(x_0, D)$ is given by

$$\mathbf{\Gamma}(x_0; x) = \{\Gamma^{jk}(x_0; x)\}_{j,k=1}^m = \{L_{kj}(x_0, D)\widetilde{\Gamma}(x_0; x)\}_{j,k=1}^m.$$

Let $\mathcal{B}_r \Subset \Omega$ be such that $x_0 \in \mathcal{B}_r$, $\mathbf{v} \in C_0^{\infty}(\mathcal{B}_r)$ and let us write

$$\mathfrak{L}(x_0, D)\mathbf{v}(x) = (\mathfrak{L}(x_0, D) - \mathfrak{L}(x, D))\mathbf{v}(x) + \mathfrak{L}(x, D)\mathbf{v}(x) \,.$$

Using the standard approach [7, 8, 9] we obtain an explicit representation formula for **v** via Newtonian potentials

$$\mathbf{v}(x) = \int_{\mathcal{B}_r} \mathbf{\Gamma}(x_0; x - y) \mathfrak{L} \mathbf{v}(y) \, dy + \int_{\mathcal{B}_r} \mathbf{\Gamma}(x_0; x - y) \big(\mathfrak{L}(x_0, D) - \mathfrak{L}(y, D) \big) \mathbf{v}(y) \, dy.$$
⁽⁹⁾

Taking the α -derivatives with $|\alpha| = 2b$ and then unfreezing the coefficients putting $x_0 = x$ we get

$$D^{\alpha}\mathbf{v}(x) = p.v. \int_{\mathcal{B}_{r}} D^{\alpha} \mathbf{\Gamma}(x; x - y) \mathfrak{L}\mathbf{v}(y) \, dy$$

+ $\sum_{|\alpha'|=2b} p.v. \int_{\mathcal{B}_{r}} D^{\alpha} \mathbf{\Gamma}(x; x - y) (\mathbf{A}_{\alpha'}(x) - \mathbf{A}_{\alpha'}(y)) D^{\alpha'}\mathbf{v}(y) \, dy$
+ $\int_{\mathbb{S}^{n-1}} D^{\beta^{s}} \mathbf{\Gamma}(x; y) \nu_{s} \, d\sigma_{y} \, \mathfrak{L}\mathbf{v}(x)$
=: $\mathfrak{K}_{\alpha}(\mathfrak{L}\mathbf{v})(x) + \sum_{|\alpha'|=2b} \mathfrak{C}_{\alpha}[\mathbf{A}_{\alpha'}, D^{\alpha'}\mathbf{v}](x) + \mathfrak{L}\mathbf{v}(x)\mathfrak{Q}_{\beta}(x),$ (10)

where the derivatives $D^{\alpha} \Gamma(\cdot; \cdot)$ and $D^{\beta^s} \Gamma(\cdot; \cdot)$ are taken with respect to the second variable, the multi-indices β^s are such that

$$\beta^{s} = (\alpha_{1}, \dots, \alpha_{s-1}, \alpha_{s} - 1, \alpha_{s+1}, \dots, \alpha_{n}), \quad |\beta^{s}| = 2b - 1,$$

and $\nu = (\nu_1, \ldots, \nu_n)$ is the outer normal to \mathbb{S}^{n-1} . Let us note that \mathfrak{K}_{α} are Calderón–Zygmund type singular integral operators, \mathfrak{C}_{α} are commutators of \mathfrak{K}_{α} with *VMO* functions, and \mathfrak{Q}_{β} are bounded integrals (cf. [7, 8, 13]).

4. Main result

Our main result is given in the following theorem.

Theorem 1. Suppose (5), $\mathbf{A}_{\alpha} = \{a_{\alpha}^{jk}\} \in VMO(\Omega) \cap L^{\infty}(\Omega) \text{ and let } \mathbf{u} \in W^{2b}_{p,\text{loc}}(\Omega; \mathbb{R}^m)$ be a strong solution to (2) with $p \in (1, \infty)$. Let $\mathbf{f} \in L^{p,\omega}(\Omega; \mathbb{R}^m)$ with ω satisfying (1). Then $\mathbf{u} \in W^{2b}_{p,\omega,\text{loc}}(\Omega; \mathbb{R}^m)$ and

$$\|\mathbf{u}\|_{W^{2b}_{p,\omega}(\Omega';\mathbb{R}^m)} \le C\big(\|\mathbf{f}\|_{p,\omega;\Omega} + \|\mathbf{u}\|_{p,\omega;\Omega''}\big) \tag{11}$$

for all $\Omega' \subseteq \Omega'' \subseteq \Omega$, where the constant *C* depends on $n, p, m, b, \omega, ||\mathbf{A}_{\alpha}||_{\infty;\Omega}$, the *VMO*-moduli $\gamma_{\mathbf{A}_{\alpha}}$ of the coefficients and on dist $(\Omega', \partial \Omega'')$.

The proof of Theorem 1 relies on some real analysis results regarding boundedness of Calderón–Zygmund type singular integral operators and their commutators, obtained in [13, 16, 17].

Proof. Fix an arbitrary $x_0 \in \text{supp } \mathbf{u}$ and let $\mathcal{B}_r \equiv \mathcal{B}_r(x_0) \Subset \Omega$. Consider $\mathbf{v} \in W_0^{2b,p}(\mathcal{B}_r(x_0))$ (the closure of $C_0^{\infty}(\mathcal{B}_r(x_0))$ with respect to the norm in $W^{2b,p}(\mathcal{B}_r(x_0))$) with supp $\mathbf{v} \subset \mathcal{B}_r(x_0)$. Then (10), Proposition 1 and $\mathbf{A}_{\alpha} \in VMO(\Omega)$ imply that for each $\varepsilon > 0$ there exists $r_0 = r_0(\varepsilon, \gamma_{\mathbf{A}_{\alpha}})$ such that

$$\|D^{2b}\mathbf{v}\|_{p,\omega;\mathcal{B}_r} \le C\big(\|\mathfrak{L}\mathbf{v}\|_{p,\omega;\mathcal{B}_r} + \varepsilon\|D^{2b}\mathbf{v}\|_{p,\omega;\mathcal{B}_r}\big)$$

whenever $r < r_0$. Choosing ε small enough we obtain

$$\|D^{2b}\mathbf{v}\|_{p,\omega;\mathcal{B}_r} \le C \|\mathfrak{L}\mathbf{v}\|_{p,\omega;\mathcal{B}_r}.$$
(12)

Let $\theta \in (0,1)$, $\theta' = \theta(3-\theta)/2 > 0$ and define the cut-off function $\varphi(x) \in C_0^{\infty}(\mathcal{B}_r)$ such that

$$\varphi(x) = \begin{cases} 1 & x \in \mathcal{B}_{\theta r}(x_0) \\ 0 & x \notin \mathcal{B}_{\theta' r}(x_0). \end{cases}$$

Since $\theta' - \theta = \theta(1 - \theta)/2$, direct calculations give

$$|D^s\varphi| \le C(s)[\theta(1-\theta)r]^{-s}, \qquad \forall \ s = 1, 2, \dots, 2b.$$

Setting $\mathbf{v} = \varphi \mathbf{u}$ in (12) we obtain

$$\begin{split} \|D^{2b}\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta r}} &\leq \|D^{2b}\mathbf{v}\|_{p,\omega;\mathcal{B}_{\theta' r}} \leq C \|\mathfrak{L}\mathbf{v}\|_{p,\omega;\mathcal{B}_{\theta' r}} \\ &\leq C \left(\|\mathbf{f}\|_{p,\omega;\mathcal{B}_{\theta' r}} + \sum_{s=1}^{2b-1} \frac{\|D^{2b-s}\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta' r}}}{[\theta(1-\theta)r]^s} + \frac{\|\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta' r}}}{[\theta(1-\theta)r]^{2b}} \right). \end{split}$$

Because of the choice of θ' we have $\theta(1-\theta) \leq 2\theta'(1-\theta')$ that implies

$$\begin{aligned} [\theta(1-\theta)r]^{2b} \|D^{2b}\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta r}} &\leq C\Big([\theta'(1-\theta')r]^{2b} \|\mathbf{f}\|_{p,\omega;\mathcal{B}_{\theta' r}} \\ &+ \sum_{s=1}^{2b-1} [\theta'(1-\theta')r]^s \|D^s\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta' r}} + \|\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta' r}}\Big). \end{aligned}$$
(13)

Setting $\Theta_s = \sup_{0 < \theta < 1} [\theta(1-\theta)r]^s ||D^s \mathbf{u}||_{p,\omega;\mathcal{B}_{\theta r}}$ we can rewrite (13) as

$$\Theta_{2b} \le C\left(r^{2b} \|\mathbf{f}\|_{p,\omega;\mathcal{B}_r} + \sum_{s=1}^{2b-1} \Theta_s + \Theta_0\right).$$
(14)

In order to estimate the seminorms Θ_s we need the following *interpolation inequality* which follows from [13, 19].

Lemma 1. There is a constant C, independent of r, such that

$$\Theta_s \le \varepsilon \Theta_{2b} + \frac{C}{\varepsilon^{s/(2b-s)}} \Theta_0 \quad \text{for each } \varepsilon \in (0,2).$$
(15)

Proof. Let $\theta_0 \in (0,1)$ be such that

$$\Theta_s \le 2[\theta_0(1-\theta_0)r]^s \|D\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta_0r}}^s.$$

By interpolation and scaling arguments we obtain

$$\|D^{s}\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta_{0}r}} \leq \delta^{2b-s}\|D^{2b}\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta_{0}r}} + \frac{C'}{\delta^{s}}\|\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta_{0}r}}$$

and hence

$$\Theta_{s} \leq 2[\theta_{0}(1-\theta_{0})r]^{s}\delta^{2b-s} \|D^{2b}\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta_{0}r}} + \frac{2C'[\theta_{0}(1-\theta_{0})r]^{s}}{\delta^{s}} \|\mathbf{u}\|_{p,\omega;\mathcal{B}_{\theta_{0}r}}.$$

Turning back to (14), choosing suitable $\varepsilon \in (0, 2)$, and applying (15) we get

$$\Theta_{2b} \le C \left(r^{2b} \| \mathbf{f} \|_{p,\omega;\mathcal{B}_r} + \Theta_0 \right).$$

Fixing $\theta = 1/2$ at the seminorm Θ_s we obtain the following Caccioppoli-type estimate:

$$\|D^{2b}\mathbf{u}\|_{p,\omega;\mathcal{B}_{r/2}} \le C\big(\|\mathbf{f}\|_{p,\omega;\Omega} + Cr^{-2b}\|\mathbf{u}\|_{p,\omega;\mathcal{B}_r}\big).$$
(16)

The desired estimate (11) follows now by means of standard covering arguments with balls $\mathcal{B}_{r/2}$ for $r < \text{dist}(\Omega', \partial \Omega'')$ and partition of unity over Ω' subordinated to this covering.

2	è		

References

- B.T. Bilalov, S.R. Sadigova, On solvability in the small of higher order elliptic equations in grand-Sobolev spaces, Complex Var. Elliptic Equ., 2020. DOI:10.1080/17476933.2020.1807965
- [2] B.T. Bilalov, S.R. Sadigova, Interior Schauder-type estimates for higherorder elliptic operators in Grand-Sobolev spaces, Sahand Comm. Math. Anal., 18(2), 2021, 129-148.
- [3] M. Bramanti, M.C. Cerutti, Commutators of singular integrals on homogeneous spaces, Boll. Un. Mat. Ital. B (VII), 10, 1996, 843–883.
- [4] S.-S. Byun, D.K. Palagachev, L. Softova, Survey on gradient estimates for nonlinear elliptic equations in various function spaces, St. Petersburg Math. J., 31(3), 2020, 401–419.
- [5] S.-S. Byun, L. Softova, Gradient estimates in generalized Morrey spaces for parabolic operators, Math. Nachr., 288(14-15), 2015, 1602–1614.
- [6] S.-S. Byun, L. Softova, Asymptotically regular operators in generalized Morrey spaces, Bull. London Math. Soc., 52(2), 2020, 64–76.
- [7] F. Chiarenza, M. Franciosi, M. Frasca, L^p-estimates for linear elliptic systems with discontinuous coefficients, Rend. Accad. Naz. Lincei, Mat. Appl., 5, 1994, 27–32.
- [8] F. Chiarenza, M. Frasca, P. Longo, Interior W^{2,p}-estimates for non divergence elliptic equations with discontinuous coefficients, Ric. Mat., 60, 1991, 149–168.
- [9] A. Douglis, L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8, 1955, 503–538.
- [10] E.B. Fabes, N. Rivière, Singular integrals with mixed homogeneity, Studia Math., 27, 1966, 19–38.
- [11] L. Fattorusso, L. Softova, Precise Morrey regularity of the weak solutions to a kind of quasi-linear systems with discontinuous data, Electron. J. Qual. Theory Differ. Equ., 2020(36), 2020, 1–13.
- [12] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166, 1994, 95–103.

- [13] D.K. Palagachev, L. Softova, *Fine regularity for elliptic systems*, Arch. Math., 86, 2006, 145–153.
- [14] D.K. Palagachev, L.G. Softova, A priori estimates and precise regularity for parabolic systems with discontinuous data, Discrete Contin. Dyn. Syst., 13(3), 2005, 721–742.
- [15] D.K. Palagachev, L.G. Softova, Generalized Morrey regularity of 2b-parabolic systems, Appl. Math. Lett., 112, 2021, Article ID 106838.
- [16] L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin., Engl. Ser., 22(3), 2006, 757–766.
- [17] L. Softova, Singular integral operators in functional spaces of Morrey type. In: Nguyen Minh Chuong (Ed.) et al., Advances in Deterministic and Stochastic Analysis, 2007, 33–42, World Sci. Publ., Hackensack, NJ.
- [18] L. Softova, The Dirichlet problem for elliptic equations with VMO coefficients in generalized Morrey spaces, Operator Theory: Advances and Applications, Springer Basel AG, 229, 2013, 365–380.
- [19] V.A. Solonnikov, On the boundary value problems for linear parabolic systems of differential equations of general form, Proc. Steklov Inst. Math., 83, 1965; English translation: O. A. Ladyzhenskaya, ed., Boundary Value Problems of Mathematical Physics III. Amer. Math. Soc. Providence, R.I. 1967.

Dian K. Palagachev Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy E-mail: dian.palagachev@poliba.it

Lubomira G. Softova Department of Mathematics, University of Salerno, 84084 Salerno, Italy E-mail: lsoftova@unisa.it

Received 16 March 2021 Accepted 17 April 2021